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ABSTRACT 

This study presents a deep learning (DL)-based flood detection framework for Phra Nakhon Si 

Ayutthaya Province, Thailand. The framework integrates U-Net architecture with three encoder 

variants-ResNet50, ResNet101, and ResNet152-using synthetic aperture radar (SAR) imagery from 

the Sentinel-1 satellite. Model performance is assessed through statistical metrics including accuracy, 

precision, recall, F1-score, Dice Loss, intersection over union (IoU), and computational time. The U-

Net model with a ResNet101 encoder achieved the best performance, with an accuracy of 91.5%, F1-

score of 0.886, Dice Loss of 0.116, and IoU of 86.8%, requiring about 24 minutes of training. Despite 

longer training, the ResNet101-based U-Net substantially enhances flood detection accuracy, 

highlighting its value as a reliable tool for real-time monitoring and rapid response in flood-prone areas 

of Thailand.  
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1. INTRODUCTION 

 

Climate variation has expanded the frequency and severity of natural disasters, especially in 

Southeast Asia. Flooding is a hazard that poses a significant threat to life and property. Among the 

countries in this region, Thailand experiences flooding almost every year. Particularly prevalent in 

the lowland terrain, Phra Nakhon Si Ayutthaya Province frequently experiences flooding in many 

areas. Floods rank among the most destructive natural disasters. Floods consistently generate 

widespread social and economic challenges across diverse regions, all over the world. Over the past 

few decades, flood events have become more frequent and more severe (Fakhri & Gkanatsios, 2025; 

Wang & Feng, 2025).  

Climate change, which is resulting in shorter-duration and more intense rainfall, is an influential 

factor driving this trend. Research indicates that in many parts of the world, the number of areas 

susceptible to frequent floods is growing (Misra et al., 2025). According to a recent study, water-

related disasters made up 48.2% of all disaster events (159 events), more than meteorological disasters 

(32.1%), climatic disasters (10%, 33 events), and geological disasters (9.7%, 32 events) combined 

(Sibandze et al., 2025). These figures demonstrate that floods continue to pose a serious threat to the 

world, especially in light of changing urban land use and environmental conditions. Flooding is also 

a significant concern in Southeast Asia. Geographical, climatic, and socioeconomic factors all 

contribute to this vulnerability (Birkmann, 2010; Torti, 2012). Flooding in Thailand has had a 

profound social and economic impact, destroying many homes and causing extensive property 

damage. 
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The southwest and northeast monsoons greatly impact Thailand’s  climate, resulting in periods 

of high rainfall (Gale et al., 2013). Flooding is made worse by regular and extended rainfall, which is 

a major contributor to river bank overflows and inundation in the surrounding areas (Loc et al., 2020). 

In 2011, many provinces in Thailand were hugely affected. Phra Nakhon Si Ayutthaya Province, 

in particular, considerably suffered profound social and economic disruption. According to a report 

by the Dutch Expertise Network for Flood Protection (DENFP), two people were killed and about 

6,000 households were impacted by the 400–500 million baht in infrastructure damages (Ghozali et 

al., 2016). Because of its lowland terrain and the presence of multiple major rivers, Phra Nakhon Si 

Ayutthaya Province is most vulnerable to flooding that occurs almost annually (Munpa et al., 2022; 

Hirabayashi et al., 2013). When water levels rise above the river capacity, areas like Phak Hai, Bang 

Sai, Bang Ban, Sena, and Phra Nakhon Si Ayutthaya districts become flood-retention areas. Planning, 

managing, and reducing the effects all depend on the detection of floods (Wang et al., 2022). 

Bentivoglio et al. (2022) reported that traditional assessment techniques suffer from several 

drawbacks, including limited accuracy across vast regions, high labor demands, and time inefficiency, 

thereby highlighting the need for more efficient and scalable approaches to flood detection.  

In order to overcome the disadvantages of traditional techniques and enhance performance, 

artificial intelligence (AI) techniques such as machine learning (ML) and deep learning (DL) have 

been increasingly applied in various fields, such as biomass calculation and carbon sequestration 

(Angkahad et al., 2024; Angkahad et al., 2025), medical diagnosis (Yang et al., 2021), including water 

analysis and flood detection (Magyari-Sáska et al., 2025 ; Shoko & Dube, 2024). Disaster risk 

assessment is one of the many fields that currently use DL techniques (Melgar-García et al., 2023). 

The processing of spatial data and its application to geographic information is particularly promising 

for convolutional neural network (CNN) architectures (Intarat et al., 2024). 

Regarding the generalization of trained models, DL models still present imperfections. This 

limitation leads to significant variability when the models are applied across different regions or 

topographies (Liu et al., 2025). The goal of this work is to improve model performance by applying 

both U-Net architecture and a CNN designed explicitly for image segmentation to Synthetic Aperture 

Radar (SAR) data from Sentinel-1 satellites, which are commonly used in hydrological studies (Haidu 

et al., 2024) and function continuously, both day and night and under all weather conditions (Pech-

May et al., 2023; Zhang et al., 2020). This combination will increase the model’s  capacity to detect 

flooded areas accurately and generate efficient training data.  

This study aims to address these challenges by developing and evaluating a DL-based flood 

detection framework that integrates the U-Net architecture with multiple encoder variants (ResNet50, 

ResNet101, and ResNet152) using Sentinel-1 SAR imagery. The models are trained to differentiate 

between flooded and non-flooded areas at the pixel level by combining VV, VH, and VV–VH 

composites with a water index for labeling. The efficacy of these encoder configurations is compared 

using a variety of statistical measures, including precision, recall, F1-score, Dice Loss, and 

Intersection over Union (IoU), as well as computational efficiency. This strategy not only tackles 

issues regards computing cost and model generalization, but also enhances flood detection accuracy, 

providing a solid foundation for operational flood monitoring in complex lowland areas. 

2. STUDY AREA 

The province of Phra Nakhon Si Ayutthaya is in the middle of Thailand, about 75 kilometers 

north of Bangkok, covering 2,547.62 square kilometers between 14°6.8450' to 14°40.2925' N and 

100°12.7623' to 100°49.3908' E. It borders Ang Thong and Lop Buri to the north, Saraburi to the east, 

Pathum Thani, Nonthaburi, and Nakhon Pathom to the south, and Suphan Buri to the west (Fig. 1). 

The province’s land is mostly lowland terrain (2 to 20 meters elevation) intersected by three major 

rivers (Chao Phraya, Pa Sak, Lopburi) and numerous canals that support irrigation, transportation, 

and flood drainage. The average temperature in Phra Nakhon Si Ayutthaya is about 28.4 °C all year 

round, summer peaks above 40 °C, and annual rainfall of 1,000–2,000 mm, with most of it falling 

between May and October, resulting in a tropical savanna climate. 
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Fig. 1. The study area: Phra Nakhon Si Ayutthaya Province, Thailand. 

The province is one of Thailand’s leading agricultural and industrial hubs, with numerous rice 

paddies and several large industrial estates that contribute significantly to the country’s manufacturing 

output. It is also of cultural and historical importance as the site of the ancient Ayutthaya Kingdom, 

a UNESCO World Heritage Site. However, its extensive lowlands, dense river network, and rapid 

urban-industrial growth make the area highly prone to severe flooding during the monsoon season, 

providing a critical case study for flood detection and risk management in Thailand’s central plains.  

3. DATA AND METHODS 

3.1. Remote sensing (RS) data 

This study selected Sentinel-1 SAR data operated by the European Space Agency (ESA) in 

ground range detected (GRD) format on September 28, 2024, derived from the Google Earth Engine 

platform. The imagery was already pre-processed through four main steps: thermal noise removal, 

radiometric calibration, terrain corrections, and speckle filtering (Ponmani & Saravanan, 2021). This 

imagery includes both VV and VH polarization. To give the model more information, VV, VH, and 

VV-VH polarization overlays were added. Then, we calculated the water index (WI) as a criterion for 

thresholding in our study area (Wu et al., 2023). The threshold is set between 0.2 and 2. It enables us 

to distinguish between flooded and non-flooded areas in SAR imagery during flood events. WI can 

be expressed as in Eq. (1): 

 
𝑊𝐼 = ln(10 × 𝑉𝐻 × 𝑉𝑉) − 8                                                 (1) 

where WI represents water index, VH and VV refer to Sentinel-1 SAR polarizations.  
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Fig. 2. Sentinel-1 SAR imagery showing four acquired samples used for model training (red bounding boxes). 

 

The aforementioned method facilitated a preliminary distinction between flooded and non-

flooded areas, which was subsequently used to assist in generating labels for the dataset. To enhance 

accuracy and reduce the time required for computation, four representative sites within Phra Nakhon 

Si Ayutthaya Province were delineated (Fig.2). The results obtained from WI calculations along with 

SAR imagery with overlaid with VV, VH, VV-VH polarizations were employed to construct dataset 

for model training and testing. The sample areas encompassed diverse land cover types, including 

flood-prone zones and riverine areas. In addition, the samples were spatially distributed to improve 

the model’s robustness and accuracy (Wu et al., 2023). 

All experiments were conducted on a high-performance workstation equipped with an Intel Xeon 

E5-2696V2 2.5 GHz processor, 128 GB of RAM, and an NVIDIA GeForce GTX 1080 Ti GPU with 

11 GB of VRAM. The system ran Ubuntu 24.04 LTS, which is compatible with deep learning 

workflows and provides a stable and optimized environment. This setup enabled the quick processing 

of large Sentinel-1 SAR datasets, reducing the time required to train the models. 

3.2. U-Net model 

CNNs are the foundation of the deep learning architecture known as U-Net (Ronneberger et al., 

2015). It is intended for pixel-level image segmentation (Konovalenko et al., 2022; Liu et al., 2020), 

especially for applications that call for accurate spatial delineation. The two primary components of 

U-Net’s   structure are the encoder (contracting path), which uses convolution, ReLU activation, and 

Max Pooling to extract deep image features and reduce the image’s   dimensionality, plus the decoder 

(expanding path), which upscales the image using transposed convolution and uses skip connections 

to connect the data to the original encoder layer (Melgar-García et al., 2023). 
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Fig. 3. The structure of U-Net: encoder-decoder with skip connections for image segmentation. 

In Fig. 3, the U-Net’s  architecture is illustrated. In such an architecture, meaningful spatial 

information is preserved. It also improves the effectiveness of segmentation. According to Zhou et al. 

(2018), the outcome offers a very detailed segmented imagery that enables the U-Net to identify 

complex regions precisely. 

U-Net has the advantage of being able to preserve spatial details and function effectively with a 

small dataset. It can also be applied to both optical and SAR imagery, including Sentinel-1 and 

Sentinel-2 (Konapala et al., 2021; Muszynski et al., 2022; Zhao et al., 2022). In addition, U-Net has 

demonstrated exceptional efficacy in flood mapping, particularly when applied to SAR imagery, 

which is weather-independent and capable of acquiring data both day and night. For instance, Ghosh 

et al. (2024) used Sentinel-1 SAR data to create a U-Net model for flood mapping. They discovered 

that it could precisely detect flooded areas even when there was cloud cover. Similarly, in order to 

map floods from high-resolution satellite data for prompt disaster response, Bonafilia et al. (2020) 

created a flood mapping model (FMM) based on U-Net architecture. When Dhanabalan et al. (2021) 

combined Sentinel-1 and Sentinel-2 data with a U-Net, they were able to monitor flooded areas in 

Kerala, India, with greater accuracy than conventional methods. According to its capabilities, U-Net 

can effectively apply Sentinel data, preserve spatial data in regions with complex terrain, and precisely 

determine flood extents. 

3.3. ResNet encoder 

The vanishing gradient and network degradation issues that are frequently present in deep models 

can be resolved by the DL architecture ResNet (He et al., 2016). The Residual Block, which consists 

of learning sub-functions and shortcut connections or identity mapping that enable the input to be 

passed straight to the next layer, is the primary mechanism of this architecture (Liu et al., 2023). The 

output is then obtained by adding the results of the sub-functions. This method enhances the training 

stability of networks with hundreds of layers. It makes deep model training more effective (He et al., 

2016; Zhong et al., 2017). 

ResNet architecture has been designed in multiple versions, including ResNet50, ResNet101, and 

ResNet152 (Intarat et al., 2024). The capabilities of ResNet include its fast convergence, complex 
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hierarchical feature learning, adaptability to further development into better architectures like 

ResNeXt or Attention-ResNet, and its ability to be applied to very deep networks without gradient 

loss (Yang et al., 2022; Hassan & Maji, 2024; Intarat et al., 2024). Some drawbacks include high 

computational resource demands, the risk of overfitting with limited training data, and the need for 

structural adjustments when handling temporal data. Due to its proven ability, ResNet was 

incorporated into our U-Net model to learn complex deep features, adapt to varying resource 

constraints when determining model depth, and perform well across diverse image processing tasks. 

These advantages make ResNet a strong choice for tasks requiring both effective hierarchical deep 

learning and spatial precision. 

3.4. Hyperparameter tuning 

Tuning hyperparameters is an important step that can significantly improve the performance of 

the DL model. These hyperparameters define the model’s architecture and learning process 

parameters (Mukherjee et al., 2024). In Table 1, the initial hyperparameters used in our study are 

shown. Correctly defining the retirees’ demarcation may help the model learn more effectively from 

limited input data. It can also reduce the risk of overfitting or underfitting and improve the model’s   

generalization when applied to other datasets. 
 

Table 1. 

 Hyperparameters of the U-Net model used in this study. 

Hyperparameter Detail 
Input shape 128 × 128 pixel 
Batch size 32 
Optimizer Adam 

Loss function Dice loss 
Activation function Sigmoid 

Epoch 500 
Encoder ResNet50, ResNet101, and ResNet152 

Encoder weight ImageNet 
 

According to Table 1, initial hyperparameters were set to train three models using different 

encoder architectures e.g. ResNet50, ResNet101, and ResNet152; hyperparameter tuning results in 

spatial details preservation and significant accuracy improvement. Lee et al. (2022) suggested that 

tuning the patch size, kernel size, and model structure provides higher precision and reduces 

validation loss significantly. Das et al. (2022) found that considering an appropriate optimizer and 

loss function can accelerate convergence and increase segmentation efficiency. Systematic 

hyperparameter fine-tuning not only helps increase the model’s   precision but also provides reliability 

and repeatability. 

3.5. Model training and testing 

According to information obtained in the previous step, the dataset was created by slicing the 

images into 128 x 128 pixels tiles. Then, these tiles were split into two sets: 80% for training and 20% 

for testing (Sazara et al., 2019). After the training, the model was used to predict and discriminate 

between flooded and non-flooded areas across the entire area. To evaluate the model’ s performance, 

the confusion matrix was associated with and delivered accuracy (Eq. (2)), precision (Eq. (3)), recall 

(Eq. (4)), and F1-score (Eq. (5)) (Amitrano et al., 2024). Each metric was calculated using true 

positive (TP), true negative (TN), false positive (FP), and false negative (FP) and expressed, 

accordingly: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (2) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (4) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    (5) 

 
The model’ s performance was also evaluated using the Dice Loss method (Pech-May et al., 

2024), as it reflects accurate image segmentation, by comparing the overlap between predicted results 

and the ground truth. We also applied the IoU method (Eq. (6)) in the four sample areas mentioned 

earlier to examine the overlap between the predicted area and the actual ones (Safarov et al., 2022).  

 

𝐼𝑜𝑈 =
|𝐴 ⋂ 𝐵|

|𝐴 ⋃ 𝐵|
     (6) 

 

where 𝐴   refers to the predicted flood area and 𝐵   reveals the actual flood area.  

IoU lies between 0 and 1 (0 - 100%): a value close to 1 indicates high predictability of the model. 

IoU can also estimate positional accuracy and completeness in flood segmentation (Mosinska et al., 

2018; Jamali et al., 2024). The comparison also included the evaluation of training time. 

4. RESULTS 

4.1. Model evaluation and comparison 

Herein, we thoroughly tested the performance of the U-Net models that used ResNet50, 

ResNet101, and ResNet152 encoders using a variety of performance metrics, such as accuracy, 

precision, recall, F-1 score, and Dice Loss. Table 2 presents a detailed summary of how well the 

model worked. 
Table 2.  

Evaluation Results of U-Net Models with ResNet50, ResNet101, and ResNet152 encoders. 

Metric ResNet50 ResNet101 ResNet152 
Accuracy 0.9164 0.9154 0.9100 
Precision 0.8790 0.8617 0.8476 

Recall 0.8736 0.9118 0.9148 
F1-score 0.8858 0.8860 0.8799 
Dice Loss 0.1149 0.1161 0.1233 

  

As shown in Table 2, the ResNet50 encoder achieved the highest overall accuracy (0.9164), 

surpassing ResNet101 (0.9154) and ResNet152 (0.9100). It also exhibited the highest precision 

(0.8790), indicating superior ability to identify flooded areas while minimizing misclassification of 

non-flooded pixels. ResNet101 and ResNet152 followed with precision scores of 0.8617 and 0.8476, 

respectively. In contrast, the recall scores displayed a different pattern: ResNet152 achieved the 

highest recall (0.9148), followed by ResNet101 (0.9118), with ResNet50 slightly lower at 0.8736. 

The F-1 scores, which balance precision and recall, proved to be similar across models. The 

ResNet50 and ResNet101 encoders achieved almost identical scores (0.8858 and 0.8860, 

respectively), whereas the ResNet152 model scored slightly lower (0.8799). The ResNet50 model had 

the lowest Dice Loss value (0.1149), followed by ResNet101 (0.1161) and ResNet152 (0.1233). Dice 

Loss is inversely related to segmentation accuracy, so lower values mean better performance. As such, 

it supports the idea that the ResNet50 encoder provides the best overall segmentation performance. 

In Fig.4, the evaluation of ResNet encoder performance is presented. In Figs. 5-9, all statistical 

metrics are exhibited.  
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Fig. 4. Examples of U-Net model predictions using ResNet50, ResNet101, and ResNet152 encoders,  

showing that ResNet101 provides the most accurate predictions. 
 

In Fig. 4, the U-Net model is illustrated detecting floods in Sentinel-1 SAR imagery using three 

encoder configurations: ResNet50, ResNet101, and ResNet152. Each panel displays the predicted 

flooded and non-flooded areas overlaid on the study area, making it straightforward to witness how 

well the segmentation works at different encoder depths. Results demonstrate that the ResNet101 

encoder produces the most accurate and spatially consistent predictions. It draws flood boundaries 

with greater precision and fewer blunders than the ResNet50 and ResNet152 configurations. The 

visual observations correspond to the testing values in Table 2, which reveal that the ResNet101-

based model had the best balance between recall and F1-score, supporting its overall superior 

performance. Figs. 5-9 illustrate the training performance of U-Net models with ResNet50, 

ResNet101, and ResNet152 encoders. Overall, the curves show how the models converged and 

balanced segmentation trade-offs. In Fig. 5, all three models improved at making accurate predictions 

over time, with variability decreasing significantly after the first few iterations. ResNet101 encoder 

had the most stable and consistent accuracy trajectory. In Fig. 6, the precision curves exhibit greater 

variation than the accuracy curves, particularly during the early epochs to improved at making 

accurate predictions, while ResNet101 encoder exhibited the most consistent precision. 

In contrast, Fig. 7, the recall curve was more stable for ResNet50, suggesting reliable detection 

of flooded areas, though with a higher false-positive rate, resulted in a lower overall recall compared 

to ResNet101 and ResNet152. Fig. 8 presents the F1-score curves, which reflect the balance between 

precision and recall, even ResNet50 showed the lowest variance, ResNet101 achieved the highest 

overall F1-score. Finally, Fig.9 presents the Dice Loss curves, with the ResNet50 encoder exhibiting 

the lowest and most stable values, indicating its ability to consistently delineate boundaries. 

In Table 3, IoU performance for the four sample areas is presented. The ResNet101-based U-Net 

model achieved the highest average IoU (86.84%). It also achieved the highest IoU in samples 1, 3, 

and 4 (94.86%, 94.61%, and 65.26%, respectively). Although ResNet152 attained the best IoU in 

sample 2 (94.53%), ResNet101 demonstrated the highest and most consistent overall IoU 

performance. 
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Table 4 reports the time comsumption of each model training. The computational overhead of 

ResNet152 (32 min) was considerably higher than that of ResNet50 (22 min 14 sec) and ResNet101 

(24 min 4 sec). This underscores the operational cost of employing excessively deep encoders in near-

real-time applications. 

4.2. Map of flooded areas in Phra Nakhon Si Ayutthaya Province 

The U-Net model with the ResNet101 encoder generated flood maps for Phra Nakhon Si 

Ayutthaya Province on October 28, 2024. In our evaluation, it offered the best overall balance 

between precision, recall, and IoU. In Fig.10, the spatial distribution of the detected inundation is 

shown. Extensive flooding was observed in the eastern and northern regions of the province—

specifically, the districts of Phak Hai, Bang Sai, Bang Ban, and Sena. These areas correspond to 

agricultural zones and low-lying floodplain regions, which act as natural retention basins when water 

levels rise above the capacity of the riverbanks. 

Fig. 10. Flood detection map in the study area on October 28, 2024. The blue areas represent regions 

identified as flooded based on U-Net model with ResNet101 encoder. 
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5. DISCUSSIONS 

The flood detection model for Phra Nakhon Si Ayutthaya Province was constructed by 

integrating the ResNet architecture into U-Net, trained by SAR imagery classified into flooded and 

non-flooded areas. SAR data offers detailed spatial information and is unaffected by cloud cover, 

making it particularly suitable for flood mapping. Reducing the model’s   runtime by selecting only 

four study areas from the entire province contributed to improving detection efficiency. Overall, the 

U-Net model with ResNet101 encoder demonstrated the highest performance. The model performed 

well across all evaluation metrics, particularly with significantly higher recall and F1-score than 

ResNet50 and ResNet152, compared to other evaluation metrics. Additionally, the U-Net model with 

ResNet101 encoder achieved the highest average IoU and required only 2 min more runtime than 

ResNet50. The results from experiments with different ResNet encoders indicate that, although the 

ResNet50-based model benefits from the shortest runtime, its relatively shallow architecture may 

limit its ability to fully capture the data in certain cases. On the other hand, ResNet152, the deepest 

network of the three networks, may make the model unnecessarily complex and encounter overfitting 

problems as well as requiring the longest runtime, which can be a problem when dealing with large 

datasets or time-sensitive tasks. These results suggest that deeper encoders, such as ResNet101 and 

ResNet152, may be more effective at capturing flooded areas comprehensively, but this advantage 

can come at the cost of lower accuracy, resulting in more false positives.  

However, the U-Net model with the ResNet101 encoder may not always outperform ResNet50 

or ResNet152, particularly when hyperparameter tuning—such as increasing the number of training 

epochs—is considered. Such tuning often entails higher computational cost and longer processing 

time. Therefore, the availability of computational resources, model efficiency, and runtime 

requirements should be considered when selecting an appropriate model. In this study, the model did 

not achieve perfect accuracy in flood detection (Fig. 11). To further enhance performance, future 

research could investigate advanced deep learning approaches, such as multi-scale DeepLab (Wu et 

al., 2022). 

Fig. 11. Example of imperfect predictions using U-Net model with ResNet50, ResNet101, and ResNet152 

encoders. 
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Additionally, using training data with higher resolution and accuracy could contribute to better 

model generalization (Ardohain & Fei, 2025). Incorporating multi-event and multi-temporal datasets 

can also enhance model performance (Magyari-Sáska et al., 2025) by capturing flood dynamics under 

diverse hydrological and environmental conditions. Such data could reduce event-specific bias and 

enhance the model’s   transferability to unseen flood scenarios or areas with different hydrological or 

topographic characteristics. (Wu et al., 2023). Future work should be integrated with temporal 

analysis, such as comparing SAR images from pre-flood and flood periods, to detect changes in 

surface water extent and identify only flooded areas (Yadav et al., 2022). 

Moreover, the findings of the present study indicate that ResNet-101 often provides an optimal 

balance between network depth and generalization performance in image classification tasks. Similar 

patterns have been observed in previous studies (Pan et al., 2023; Shokati et al., 2025; Ait EI Asri et 

al., 2023) which found that ResNet101 achieved superior performance and often struck a good balance 

between feature extraction and the prevention of overfitting (He et al., 2016; Liu et al., 2020). 

compared with ResNet50 and ResNet152, despite not being the deepest architecture. These results 

highlight that a more complex model does not guarantee better performance (Pan et al., 2023) and 

may not work as well for segmentation tasks with SAR data (Pech-May et al., 2023). Although 

ResNet50 demonstrated the lowest training loss among the tested architectures, its performance on 

the validation set was markedly lower than that of ResNet101. This outcome suggests that ResNet50 

being relatively compact and shallow was prone to overfitting and incapable of capturing complex 

and subtle patterns (Pan et al., 2023; Li et al.,2022). Taken together, these findings provide further 

evidence that ResNet101 offers a robust and efficient architecture for image-based detection tasks.  

During prediction testing, model performance was evaluated using IoU. ResNet101 achieved 

outstanding performance, with an IoU of 86.84%, demonstrating superior predictive capability. Such 

a model provided the best results for the samples within area boundaries one, three, and four (see the 

red boundaries in Fig.2). In contrast, the sample in boundary two is aligned with the ResNet50 

encoder. 

However, based on model evaluation, the ResNet152 encoder achieved the highest recall 

(0.9148) but underperformed in precision (0.8476) and overall IoU. This issue reflected a tendency 

to over-segment flooded areas and introduce false positives. This finding aligns with previous studies, 

which emphasize that very deep encoders can increase model complexity and training time without 

proportionally improving segmentation quality (Bonafilia et al., 2020; Liu et al., 2020). ResNet152 

also required the longest computational time compared to the other encoders (Table 4), highlighting 

the trade-off between encoder depth and computational efficiency. Deeper networks introduce 

additional overhead without necessarily improving segmentation performance.  

This study demonstrates that our flood detection model is capable of accurately delineating flood 

extents. The generated flood maps can be integrated into existing disaster management frameworks 

in Thailand, such as Thailand Incident Command System of the Department of Disaster Prevention 

and Mitigation (DDPM). Such integration has the potential to support spatial decision-making and 

strengthen operational response during flood events. To enable the developed model to be effectively 

deployed in real-world scenarios, improvements in computational infrastructure, processing, and data 

storage capabilities are required. The effectual model includes the use of higher-performance servers 

or workstations, particularly for larger datasets, especially when extending analyses to a national 

scale. Furthermore, addressing computational latency is crucial to ensure timely decision-making 

during flood events. To address the limitations arising from computational time, adopting models with 

lower architecture complexity yet comparable performance, such as ResNet50, may provide a 

practical solution. This approach would help reduce computational latency and resource demand, 

thereby improving the feasibility of real-time deployment.  

 By systematically comparing three encoder depths, we demonstrated that the ResNet101-based 

U-Net represents the best choice for mapping floods in complex lowland areas such as Phra Nakhon 

Si Ayutthaya Province. These results address a key research gap by providing a robust and 

generalizable deep learning model capable of balancing accuracy, stability, and computational 

efficiency in flood detection. This study provides novel insights into optimizing U-Net architectures 
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for flood mapping using SAR imagery through the evaluation of different encoder depths. The results 

are applicable to large-scale flood monitoring and the strategic planning of emergency response 

operations. 

 

6. CONCLUSIONS 

This study developed a U-Net-based flood detection framework for Phra Nakhon Si Ayutthaya 

Province, using Sentinel-1 SAR imagery combined with ResNet-50, ResNet-101, and ResNet-152 

encoders. Results demonstrated that the ResNet-101 encoder offered the best balance between 

segmentation performance and computational efficiency, making it the optimal choice for operational 

flood mapping.  

The flood maps constructed for the October 2024 event aligned with past flood patterns and 

successfully identified the province’s   most at-risk areas, underscoring the model’s   reliability for 

hazard assessment.  

From a practical perspective, the proposed framework is scalable and provides an effective means 

for near real-time flood monitoring, thereby aiding disaster management. Future research should 

explore multi-temporal SAR data, integration with optical and LiDAR sources, and advanced 

architectures to further enhance generalization and boundary detection in complex environments. 
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