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ABSTRACT

This study presents a deep learning (DL)-based flood detection framework for Phra Nakhon Si
Ayutthaya Province, Thailand. The framework integrates U-Net architecture with three encoder
variants-ResNet50, ResNet101, and ResNet152-using synthetic aperture radar (SAR) imagery from
the Sentinel-1 satellite. Model performance is assessed through statistical metrics including accuracy,
precision, recall, F1-score, Dice Loss, intersection over union (IoU), and computational time. The U-
Net model with a ResNet101 encoder achieved the best performance, with an accuracy of 91.5%, F1-
score of 0.886, Dice Loss of 0.116, and IoU of 86.8%, requiring about 24 minutes of training. Despite
longer training, the ResNetlOl-based U-Net substantially enhances flood detection accuracy,
highlighting its value as a reliable tool for real-time monitoring and rapid response in flood-prone areas
of Thailand.
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1. INTRODUCTION

Climate variation has expanded the frequency and severity of natural disasters, especially in
Southeast Asia. Flooding is a hazard that poses a significant threat to life and property. Among the
countries in this region, Thailand experiences flooding almost every year. Particularly prevalent in
the lowland terrain, Phra Nakhon Si Ayutthaya Province frequently experiences flooding in many
areas. Floods rank among the most destructive natural disasters. Floods consistently generate
widespread social and economic challenges across diverse regions, all over the world. Over the past
few decades, flood events have become more frequent and more severe (Fakhri & Gkanatsios, 2025;
Wang & Feng, 2025).

Climate change, which is resulting in shorter-duration and more intense rainfall, is an influential
factor driving this trend. Research indicates that in many parts of the world, the number of areas
susceptible to frequent floods is growing (Misra et al., 2025). According to a recent study, water-
related disasters made up 48.2% of all disaster events (159 events), more than meteorological disasters
(32.1%), climatic disasters (10%, 33 events), and geological disasters (9.7%, 32 events) combined
(Sibandze et al., 2025). These figures demonstrate that floods continue to pose a serious threat to the
world, especially in light of changing urban land use and environmental conditions. Flooding is also
a significant concern in Southeast Asia. Geographical, climatic, and socioeconomic factors all
contribute to this vulnerability (Birkmann, 2010; Torti, 2012). Flooding in Thailand has had a
profound social and economic impact, destroying many homes and causing extensive property
damage.
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The southwest and northeast monsoons greatly impact Thailand’s climate, resulting in periods
of high rainfall (Gale et al., 2013). Flooding is made worse by regular and extended rainfall, which is
a major contributor to river bank overflows and inundation in the surrounding areas (Loc et al., 2020).

In 2011, many provinces in Thailand were hugely affected. Phra Nakhon Si Ayutthaya Province,
in particular, considerably suffered profound social and economic disruption. According to a report
by the Dutch Expertise Network for Flood Protection (DENFP), two people were killed and about
6,000 households were impacted by the 400—500 million baht in infrastructure damages (Ghozali et
al., 2016). Because of its lowland terrain and the presence of multiple major rivers, Phra Nakhon Si
Ayutthaya Province is most vulnerable to flooding that occurs almost annually (Munpa et al., 2022;
Hirabayashi et al., 2013). When water levels rise above the river capacity, areas like Phak Hai, Bang
Sai, Bang Ban, Sena, and Phra Nakhon Si Ayutthaya districts become flood-retention areas. Planning,
managing, and reducing the effects all depend on the detection of floods (Wang et al., 2022).
Bentivoglio et al. (2022) reported that traditional assessment techniques suffer from several
drawbacks, including limited accuracy across vast regions, high labor demands, and time inefficiency,
thereby highlighting the need for more efficient and scalable approaches to flood detection.

In order to overcome the disadvantages of traditional techniques and enhance performance,
artificial intelligence (AI) techniques such as machine learning (ML) and deep learning (DL) have
been increasingly applied in various fields, such as biomass calculation and carbon sequestration
(Angkahad et al., 2024; Angkahad et al., 2025), medical diagnosis (Yang et al., 2021), including water
analysis and flood detection (Magyari-Saska et al., 2025 ; Shoko & Dube, 2024). Disaster risk
assessment is one of the many fields that currently use DL techniques (Melgar-Garcia et al., 2023).
The processing of spatial data and its application to geographic information is particularly promising
for convolutional neural network (CNN) architectures (Intarat et al., 2024).

Regarding the generalization of trained models, DL models still present imperfections. This
limitation leads to significant variability when the models are applied across different regions or
topographies (Liu et al., 2025). The goal of this work is to improve model performance by applying
both U-Net architecture and a CNN designed explicitly for image segmentation to Synthetic Aperture
Radar (SAR) data from Sentinel-1 satellites, which are commonly used in hydrological studies (Haidu
et al., 2024) and function continuously, both day and night and under all weather conditions (Pech-
May et al., 2023; Zhang et al., 2020). This combination will increase the model’s capacity to detect
flooded areas accurately and generate efficient training data.

This study aims to address these challenges by developing and evaluating a DL-based flood
detection framework that integrates the U-Net architecture with multiple encoder variants (ResNet50,
ResNet101, and ResNet152) using Sentinel-1 SAR imagery. The models are trained to differentiate
between flooded and non-flooded areas at the pixel level by combining VV, VH, and VV-VH
composites with a water index for labeling. The efficacy of these encoder configurations is compared
using a variety of statistical measures, including precision, recall, Fl-score, Dice Loss, and
Intersection over Union (IoU), as well as computational efficiency. This strategy not only tackles
issues regards computing cost and model generalization, but also enhances flood detection accuracy,
providing a solid foundation for operational flood monitoring in complex lowland areas.

2. STUDY AREA

The province of Phra Nakhon Si Ayutthaya is in the middle of Thailand, about 75 kilometers
north of Bangkok, covering 2,547.62 square kilometers between 14°6.8450' to 14°40.2925' N and
100°12.7623'to 100°49.3908' E. It borders Ang Thong and Lop Buri to the north, Saraburi to the east,
Pathum Thani, Nonthaburi, and Nakhon Pathom to the south, and Suphan Buri to the west (Fig. 1).
The province’s land is mostly lowland terrain (2 to 20 meters elevation) intersected by three major
rivers (Chao Phraya, Pa Sak, Lopburi) and numerous canals that support irrigation, transportation,
and flood drainage. The average temperature in Phra Nakhon Si Ayutthaya is about 28.4 °C all year
round, summer peaks above 40 °C, and annual rainfall of 1,000—2,000 mm, with most of it falling
between May and October, resulting in a tropical savanna climate.
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Fig. 1. The study area: Phra Nakhon Si Ayutthaya Province, Thailand.

The province is one of Thailand’s leading agricultural and industrial hubs, with numerous rice
paddies and several large industrial estates that contribute significantly to the country’s manufacturing
output. It is also of cultural and historical importance as the site of the ancient Ayutthaya Kingdom,
a UNESCO World Heritage Site. However, its extensive lowlands, dense river network, and rapid
urban-industrial growth make the area highly prone to severe flooding during the monsoon season,
providing a critical case study for flood detection and risk management in Thailand’s central plains.

3. DATA AND METHODS

3.1. Remote sensing (RS) data

This study selected Sentinel-1 SAR data operated by the European Space Agency (ESA) in
ground range detected (GRD) format on September 28, 2024, derived from the Google Earth Engine
platform. The imagery was already pre-processed through four main steps: thermal noise removal,
radiometric calibration, terrain corrections, and speckle filtering (Ponmani & Saravanan, 2021). This
imagery includes both VV and VH polarization. To give the model more information, VV, VH, and
VV-VH polarization overlays were added. Then, we calculated the water index (WI) as a criterion for
thresholding in our study area (Wu et al., 2023). The threshold is set between 0.2 and 2. It enables us
to distinguish between flooded and non-flooded areas in SAR imagery during flood events. WI can
be expressed as in Eq. (1):

WI =1In(10 X VH X VV) — 8 (1)

where WI represents water index, VH and V'V refer to Sentinel-1 SAR polarizations.
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Fig. 2. Sentinel-1 SAR imagery showing four acquired samples used for model training (red bounding boxes).

The aforementioned method facilitated a preliminary distinction between flooded and non-
flooded areas, which was subsequently used to assist in generating labels for the dataset. To enhance
accuracy and reduce the time required for computation, four representative sites within Phra Nakhon
Si Ayutthaya Province were delineated (Fig.2). The results obtained from WI calculations along with
SAR imagery with overlaid with VV, VH, VV-VH polarizations were employed to construct dataset
for model training and testing. The sample areas encompassed diverse land cover types, including
flood-prone zones and riverine areas. In addition, the samples were spatially distributed to improve
the model’s robustness and accuracy (Wu et al., 2023).

All experiments were conducted on a high-performance workstation equipped with an Intel Xeon
E5-2696V2 2.5 GHz processor, 128 GB of RAM, and an NVIDIA GeForce GTX 1080 Ti GPU with
11 GB of VRAM. The system ran Ubuntu 24.04 LTS, which is compatible with deep learning
workflows and provides a stable and optimized environment. This setup enabled the quick processing
of large Sentinel-1 SAR datasets, reducing the time required to train the models.

3.2. U-Net model

CNNs are the foundation of the deep learning architecture known as U-Net (Ronneberger et al.,
2015). It is intended for pixel-level image segmentation (Konovalenko et al., 2022; Liu et al., 2020),
especially for applications that call for accurate spatial delineation. The two primary components of
U-Net’s structure are the encoder (contracting path), which uses convolution, ReLU activation, and
Max Pooling to extract deep image features and reduce the image’s dimensionality, plus the decoder
(expanding path), which upscales the image using transposed convolution and uses skip connections
to connect the data to the original encoder layer (Melgar-Garcia et al., 2023).
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Fig. 3. The structure of U-Net: encoder-decoder with skip connections for image segmentation.

In Fig. 3, the U-Net’s architecture is illustrated. In such an architecture, meaningful spatial
information is preserved. It also improves the effectiveness of segmentation. According to Zhou et al.
(2018), the outcome offers a very detailed segmented imagery that enables the U-Net to identify
complex regions precisely.

U-Net has the advantage of being able to preserve spatial details and function effectively with a
small dataset. It can also be applied to both optical and SAR imagery, including Sentinel-1 and
Sentinel-2 (Konapala et al., 2021; Muszynski et al., 2022; Zhao et al., 2022). In addition, U-Net has
demonstrated exceptional efficacy in flood mapping, particularly when applied to SAR imagery,
which is weather-independent and capable of acquiring data both day and night. For instance, Ghosh
et al. (2024) used Sentinel-1 SAR data to create a U-Net model for flood mapping. They discovered
that it could precisely detect flooded areas even when there was cloud cover. Similarly, in order to
map floods from high-resolution satellite data for prompt disaster response, Bonafilia et al. (2020)
created a flood mapping model (FMM) based on U-Net architecture. When Dhanabalan et al. (2021)
combined Sentinel-1 and Sentinel-2 data with a U-Net, they were able to monitor flooded areas in
Kerala, India, with greater accuracy than conventional methods. According to its capabilities, U-Net
can effectively apply Sentinel data, preserve spatial data in regions with complex terrain, and precisely
determine flood extents.

3.3. ResNet encoder

The vanishing gradient and network degradation issues that are frequently present in deep models
can be resolved by the DL architecture ResNet (He et al., 2016). The Residual Block, which consists
of learning sub-functions and shortcut connections or identity mapping that enable the input to be
passed straight to the next layer, is the primary mechanism of this architecture (Liu et al., 2023). The
output is then obtained by adding the results of the sub-functions. This method enhances the training
stability of networks with hundreds of layers. It makes deep model training more effective (He et al.,
2016; Zhong et al., 2017).

ResNet architecture has been designed in multiple versions, including ResNet50, ResNet101, and
ResNet152 (Intarat et al., 2024). The capabilities of ResNet include its fast convergence, complex
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hierarchical feature learning, adaptability to further development into better architectures like
ResNeXt or Attention-ResNet, and its ability to be applied to very deep networks without gradient
loss (Yang et al., 2022; Hassan & Maji, 2024; Intarat et al., 2024). Some drawbacks include high
computational resource demands, the risk of overfitting with limited training data, and the need for
structural adjustments when handling temporal data. Due to its proven ability, ResNet was
incorporated into our U-Net model to learn complex deep features, adapt to varying resource
constraints when determining model depth, and perform well across diverse image processing tasks.
These advantages make ResNet a strong choice for tasks requiring both effective hierarchical deep
learning and spatial precision.

3.4. Hyperparameter tuning

Tuning hyperparameters is an important step that can significantly improve the performance of
the DL model. These hyperparameters define the model’s architecture and learning process
parameters (Mukherjee et al., 2024). In Table 1, the initial hyperparameters used in our study are
shown. Correctly defining the retirees’ demarcation may help the model learn more effectively from
limited input data. It can also reduce the risk of overfitting or underfitting and improve the model’s
generalization when applied to other datasets.

Table 1.
Hyperparameters of the U-Net model used in this study.
Hyperparameter Detail
Input shape 128 X 128 pixel
Batch size 32
Optimizer Adam
Loss function Dice loss
Activation function Sigmoid
Epoch 500
Encoder ResNet50, ResNet101, and ResNet152
Encoder weight ImageNet

According to Table 1, initial hyperparameters were set to train three models using different
encoder architectures e.g. ResNet50, ResNetl101, and ResNet152; hyperparameter tuning results in
spatial details preservation and significant accuracy improvement. Lee et al. (2022) suggested that
tuning the patch size, kernel size, and model structure provides higher precision and reduces
validation loss significantly. Das et al. (2022) found that considering an appropriate optimizer and
loss function can accelerate convergence and increase segmentation efficiency. Systematic
hyperparameter fine-tuning not only helps increase the model’s precision but also provides reliability
and repeatability.

3.5. Model training and testing

According to information obtained in the previous step, the dataset was created by slicing the
images into 128 x 128 pixels tiles. Then, these tiles were split into two sets: 80% for training and 20%
for testing (Sazara et al., 2019). After the training, the model was used to predict and discriminate
between flooded and non-flooded areas across the entire area. To evaluate the model’ s performance,
the confusion matrix was associated with and delivered accuracy (Eq. (2)), precision (Eq. (3)), recall
(Eq. (4)), and Fl-score (Eq. (5)) (Amitrano et al., 2024). Each metric was calculated using true
positive (TP), true negative (TN), false positive (FP), and false negative (FP) and expressed,
accordingly:

TP+TN

Accuracy = ——
y TP+TN+FP+FN

2



TP

Precision = 3)
TP+FP
Recall = —= 4)
TP+FN

2 x Precision x Recall
F1 — score = %)

Precision+Recall

The model’ s performance was also evaluated using the Dice Loss method (Pech-May et al.,
2024), as it reflects accurate image segmentation, by comparing the overlap between predicted results
and the ground truth. We also applied the IoU method (Eq. (6)) in the four sample areas mentioned
earlier to examine the overlap between the predicted area and the actual ones (Safarov et al., 2022).

_lanB|

IoU =
|AUB|

(6)

where A refers to the predicted flood area and B reveals the actual flood area.

IoU lies between 0 and 1 (0 - 100%): a value close to 1 indicates high predictability of the model.
IoU can also estimate positional accuracy and completeness in flood segmentation (Mosinska et al.,
2018; Jamali et al., 2024). The comparison also included the evaluation of training time.

4. RESULTS

4.1. Model evaluation and comparison

Herein, we thoroughly tested the performance of the U-Net models that used ResNet50,
ResNet101, and ResNetl52 encoders using a variety of performance metrics, such as accuracy,
precision, recall, F-1 score, and Dice Loss. Table 2 presents a detailed summary of how well the
model worked.

Table 2.

Evaluation Results of U-Net Models with ResNet50, ResNet101, and ResNet152 encoders.

Metric ResNetS50 ResNet101 ResNet152
Accuracy 0.9164 0.9154 0.9100
Precision 0.8790 0.8617 0.8476
Recall 0.8736 0.9118 0.9148
F1-score 0.8858 0.8860 0.8799
Dice Loss 0.1149 0.1161 0.1233

As shown in Table 2, the ResNet50 encoder achieved the highest overall accuracy (0.9164),
surpassing ResNet101 (0.9154) and ResNetl152 (0.9100). It also exhibited the highest precision
(0.8790), indicating superior ability to identify flooded areas while minimizing misclassification of
non-flooded pixels. ResNet101 and ResNet152 followed with precision scores of 0.8617 and 0.8476,
respectively. In contrast, the recall scores displayed a different pattern: ResNetl152 achieved the
highest recall (0.9148), followed by ResNet101 (0.9118), with ResNet50 slightly lower at 0.8736.

The F-1 scores, which balance precision and recall, proved to be similar across models. The
ResNet50 and ResNetl01 encoders achieved almost identical scores (0.8858 and 0.8860,
respectively), whereas the ResNet152 model scored slightly lower (0.8799). The ResNet50 model had
the lowest Dice Loss value (0.1149), followed by ResNet101 (0.1161) and ResNet152 (0.1233). Dice
Loss is inversely related to segmentation accuracy, so lower values mean better performance. As such,
it supports the idea that the ResNet50 encoder provides the best overall segmentation performance.
In Fig.4, the evaluation of ResNet encoder performance is presented. In Figs. 5-9, all statistical
metrics are exhibited.
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Fig. 4. Examples of U-Net model predictions using ResNet50, ResNet101, and ResNet152 encoders,
showing that ResNet101 provides the most accurate predictions.

In Fig. 4, the U-Net model is illustrated detecting floods in Sentinel-1 SAR imagery using three
encoder configurations: ResNet50, ResNet101, and ResNet152. Each panel displays the predicted
flooded and non-flooded areas overlaid on the study area, making it straightforward to witness how
well the segmentation works at different encoder depths. Results demonstrate that the ResNet101
encoder produces the most accurate and spatially consistent predictions. It draws flood boundaries
with greater precision and fewer blunders than the ResNetS0 and ResNet152 configurations. The
visual observations correspond to the testing values in Table 2, which reveal that the ResNet101-
based model had the best balance between recall and Fl-score, supporting its overall superior
performance. Figs. 5-9 illustrate the training performance of U-Net models with ResNet50,
ResNet101, and ResNetl52 encoders. Overall, the curves show how the models converged and
balanced segmentation trade-offs. In Fig. 5, all three models improved at making accurate predictions
over time, with variability decreasing significantly after the first few iterations. ResNet101 encoder
had the most stable and consistent accuracy trajectory. In Fig. 6, the precision curves exhibit greater
variation than the accuracy curves, particularly during the early epochs to improved at making
accurate predictions, while ResNet101 encoder exhibited the most consistent precision.

In contrast, Fig. 7, the recall curve was more stable for ResNet50, suggesting reliable detection
of flooded areas, though with a higher false-positive rate, resulted in a lower overall recall compared
to ResNet101 and ResNet152. Fig. 8 presents the F1-score curves, which reflect the balance between
precision and recall, even ResNet50 showed the lowest variance, ResNet101 achieved the highest
overall Fl-score. Finally, Fig.9 presents the Dice Loss curves, with the ResNet50 encoder exhibiting
the lowest and most stable values, indicating its ability to consistently delineate boundaries.

In Table 3, IoU performance for the four sample areas is presented. The ResNet101-based U-Net
model achieved the highest average loU (86.84%). It also achieved the highest IoU in samples 1, 3,
and 4 (94.86%, 94.61%, and 65.26%, respectively). Although ResNetl152 attained the best IoU in
sample 2 (94.53%), ResNetlOl demonstrated the highest and most consistent overall IoU
performance.

ded. ResNet101
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Table 4 reports the time comsumption of each model training. The computational overhead of
ResNet152 (32 min) was considerably higher than that of ResNet50 (22 min 14 sec) and ResNet101
(24 min 4 sec). This underscores the operational cost of employing excessively deep encoders in near-
real-time applications.

4.2. Map of flooded areas in Phra Nakhon Si Ayutthaya Province

The U-Net model with the ResNetl01 encoder generated flood maps for Phra Nakhon Si
Ayutthaya Province on October 28, 2024. In our evaluation, it offered the best overall balance
between precision, recall, and IoU. In Fig.10, the spatial distribution of the detected inundation is
shown. Extensive flooding was observed in the eastern and northern regions of the province—
specifically, the districts of Phak Hai, Bang Sai, Bang Ban, and Sena. These areas correspond to
agricultural zones and low-lying floodplain regions, which act as natural retention basins when water
levels rise above the capacity of the riverbanks.

Map of Flooded Areas in Phra Nakhon Si Ayutthaya Province
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Fig. 10. Flood detection map in the study area on October 28, 2024. The blue areas represent regions
identified as flooded based on U-Net model with ResNet101 encoder.
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5. DISCUSSIONS

The flood detection model for Phra Nakhon Si Ayutthaya Province was constructed by
integrating the ResNet architecture into U-Net, trained by SAR imagery classified into flooded and
non-flooded areas. SAR data offers detailed spatial information and is unaffected by cloud cover,
making it particularly suitable for flood mapping. Reducing the model’s runtime by selecting only
four study areas from the entire province contributed to improving detection efficiency. Overall, the
U-Net model with ResNet101 encoder demonstrated the highest performance. The model performed
well across all evaluation metrics, particularly with significantly higher recall and F1-score than
ResNet50 and ResNet152, compared to other evaluation metrics. Additionally, the U-Net model with
ResNet101 encoder achieved the highest average IoU and required only 2 min more runtime than
ResNet50. The results from experiments with different ResNet encoders indicate that, although the
ResNet50-based model benefits from the shortest runtime, its relatively shallow architecture may
limit its ability to fully capture the data in certain cases. On the other hand, ResNet152, the deepest
network of the three networks, may make the model unnecessarily complex and encounter overfitting
problems as well as requiring the longest runtime, which can be a problem when dealing with large
datasets or time-sensitive tasks. These results suggest that deeper encoders, such as ResNet101 and
ResNet152, may be more effective at capturing flooded arecas comprehensively, but this advantage
can come at the cost of lower accuracy, resulting in more false positives.

However, the U-Net model with the ResNet101 encoder may not always outperform ResNet50
or ResNet152, particularly when hyperparameter tuning—such as increasing the number of training
epochs—is considered. Such tuning often entails higher computational cost and longer processing
time. Therefore, the availability of computational resources, model efficiency, and runtime
requirements should be considered when selecting an appropriate model. In this study, the model did
not achieve perfect accuracy in flood detection (Fig. 11). To further enhance performance, future
research could investigate advanced deep learning approaches, such as multi-scale DeepLab (Wu et
al., 2022).

original image ground truth mask predicted mask flood predicted heatmap
ResNet50
ResNet101
ResNetl152
b
* »

Fig. 11. Example of imperfect predictions using U-Net model with ResNet50, ResNet101, and ResNet152
encoders.
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Additionally, using training data with higher resolution and accuracy could contribute to better
model generalization (Ardohain & Fei, 2025). Incorporating multi-event and multi-temporal datasets
can also enhance model performance (Magyari-Saska et al., 2025) by capturing flood dynamics under
diverse hydrological and environmental conditions. Such data could reduce event-specific bias and
enhance the model’s transferability to unseen flood scenarios or areas with different hydrological or
topographic characteristics. (Wu et al., 2023). Future work should be integrated with temporal
analysis, such as comparing SAR images from pre-flood and flood periods, to detect changes in
surface water extent and identify only flooded areas (Yadav et al., 2022).

Moreover, the findings of the present study indicate that ResNet-101 often provides an optimal
balance between network depth and generalization performance in image classification tasks. Similar
patterns have been observed in previous studies (Pan et al., 2023; Shokati et al., 2025; Ait EI Asri et
al., 2023) which found that ResNet101 achieved superior performance and often struck a good balance
between feature extraction and the prevention of overfitting (He et al., 2016; Liu et al., 2020).
compared with ResNet50 and ResNet152, despite not being the deepest architecture. These results
highlight that a more complex model does not guarantee better performance (Pan et al., 2023) and
may not work as well for segmentation tasks with SAR data (Pech-May et al., 2023). Although
ResNet50 demonstrated the lowest training loss among the tested architectures, its performance on
the validation set was markedly lower than that of ResNet101. This outcome suggests that ResNet50
being relatively compact and shallow was prone to overfitting and incapable of capturing complex
and subtle patterns (Pan et al., 2023; Li et al.,2022). Taken together, these findings provide further
evidence that ResNet101 offers a robust and efficient architecture for image-based detection tasks.
During prediction testing, model performance was evaluated using IoU. ResNet101 achieved
outstanding performance, with an IoU of 86.84%, demonstrating superior predictive capability. Such
a model provided the best results for the samples within area boundaries one, three, and four (see the
red boundaries in Fig.2). In contrast, the sample in boundary two is aligned with the ResNet50
encoder.

However, based on model evaluation, the ResNetl52 encoder achieved the highest recall
(0.9148) but underperformed in precision (0.8476) and overall IoU. This issue reflected a tendency
to over-segment flooded areas and introduce false positives. This finding aligns with previous studies,
which emphasize that very deep encoders can increase model complexity and training time without
proportionally improving segmentation quality (Bonafilia et al., 2020; Liu et al., 2020). ResNet152
also required the longest computational time compared to the other encoders (Table 4), highlighting
the trade-off between encoder depth and computational efficiency. Deeper networks introduce
additional overhead without necessarily improving segmentation performance.

This study demonstrates that our flood detection model is capable of accurately delineating flood
extents. The generated flood maps can be integrated into existing disaster management frameworks
in Thailand, such as Thailand Incident Command System of the Department of Disaster Prevention
and Mitigation (DDPM). Such integration has the potential to support spatial decision-making and
strengthen operational response during flood events. To enable the developed model to be effectively
deployed in real-world scenarios, improvements in computational infrastructure, processing, and data
storage capabilities are required. The effectual model includes the use of higher-performance servers
or workstations, particularly for larger datasets, especially when extending analyses to a national
scale. Furthermore, addressing computational latency is crucial to ensure timely decision-making
during flood events. To address the limitations arising from computational time, adopting models with
lower architecture complexity yet comparable performance, such as ResNet50, may provide a
practical solution. This approach would help reduce computational latency and resource demand,
thereby improving the feasibility of real-time deployment.

By systematically comparing three encoder depths, we demonstrated that the ResNet101-based
U-Net represents the best choice for mapping floods in complex lowland areas such as Phra Nakhon
Si Ayutthaya Province. These results address a key research gap by providing a robust and
generalizable deep learning model capable of balancing accuracy, stability, and computational
efficiency in flood detection. This study provides novel insights into optimizing U-Net architectures
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for flood mapping using SAR imagery through the evaluation of different encoder depths. The results
are applicable to large-scale flood monitoring and the strategic planning of emergency response
operations.

6. CONCLUSIONS

This study developed a U-Net-based flood detection framework for Phra Nakhon Si Ayutthaya
Province, using Sentinel-1 SAR imagery combined with ResNet-50, ResNet-101, and ResNet-152
encoders. Results demonstrated that the ResNet-101 encoder offered the best balance between
segmentation performance and computational efficiency, making it the optimal choice for operational
flood mapping.

The flood maps constructed for the October 2024 event aligned with past flood patterns and
successfully identified the province’s most at-risk areas, underscoring the model’s reliability for
hazard assessment.

From a practical perspective, the proposed framework is scalable and provides an effective means
for near real-time flood monitoring, thereby aiding disaster management. Future research should
explore multi-temporal SAR data, integration with optical and LiDAR sources, and advanced
architectures to further enhance generalization and boundary detection in complex environments.
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