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ABSTRACT: 
Accurate prediction of streamflow plays an important role in water resource management and the 

continuous assessment of inundation susceptibility in the context of climate change plays a key role in 

facilitating the construction of appropriate strategies for sustainable development. So far, few studies 

into inundation susceptibility have explicitly incorporated the effects of climate change into their 

methodologies. This study aimed to assess inundation susceptibility for Vinh Phuc province in 

Vietnam, from 2000 to 2020, using machine learning and remote sensing. The algorithms used were 

support vector machine, catboost, and extratrees. A geo-spatial database of 206 inundation points and 

11 conditioning factors (namely elevation, slope, curvature, aspect, distance to river, distance to road, 

NDVI, NDBI, rainfall, soil type, and TWI) from 2000 to 2020 was developed to be used as the input 

data. RMSE, MAE, AUC, and R² were used to assess the fit of the models. The results showed that all 

the proposed models were a good fit, with AUC values of 0.95 and over. In general, the total area 

marked as very low risk or low risk has increased, with the high risk and very high-risk areas having 

decreased over the period studied. This change was mainly concentrated in the city of Vinh Yen where 

there has been strong urban growth. The models proposed in this study are a promising toolkit to assess 

inundation susceptibility continuously and can support decision makers involved in sustainable 

development. Our results highlight the benefits and consequences of planned and unplanned 

development. Properly planned can reduce the flood risk, while unplanned development can increase 

the risk. Therefore, by applying the theoretical framework in this study, decision makers or planners 

can build the most appropriate strategies for flood control in the context of climate change. Our 

approach in this study represents a theoretical framework for future research not only on inundation 

management but also natural hazard management, in regions around the world. 

 

Key-words: inundation, support vector machine, Catboost, Extratree, machine learning, Vinh Phuc. 

1. INTRODUCTION 

Climate change is considered one of the three key factors for "global changes". This process is 

the transformation of nature to human, important influence on the biological, the natural resource 

such as water, land and air resource, the weather system and the natural hazard such as forest fire, 

flood, and inundation (Petrişor et al. 2020, Nguyen et al. 2022a). Climate change can alter the 

frequency and intensity of precipitation and the hydrological regime of a region and therefore can 

influence the occurrence and frequency of inundation. Several studies have established that 

inundation is the result of climate change and is influenced by climatic determinants such as increased 

precipitation (Roy et al. 2020, Avand and Moradi 2021, Li et al. 2021, Rajkhowa and Sarma 2021). 

According to the Center for Research on the Epidemiology of Disasters (CRED), inundation is one 

of the most damaging natural hazards to human life and property. According to the World Bank, in 

the period 1995–2005, approximately 150,000 floods and inundation occurred worldwide, leading to 

some 157,000 deaths, representing 11% of all victims of natural disasters (Janizadeh et al. 2021a, 

Ghosh et al. 2022c, Ghosh et al. 2022b). Multiple studies have indicated that flood and inundation 

affect in the region of 200 million people each year and that these numbers are likely to increase 

significantly by 2050 due to climate change and urban growth (Pourghasemi et al. 2020, Janizadeh et 

al. 2021b).  
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41% of the deaths mentioned above were in Asia, and of all Asian countries, Vietnam is one of 

the countries most vulnerable to flood and inundation (Nguyen 2022a). For example, severe flood and 

inundation in the Central region of Vietnam in 1999 caused 547 deaths and damaged 630,000 homes. 

This is why predicting flood and inundation susceptibility has become a top priority for the scientific 

community and local authorities across the country. 

Inundation susceptibility is the likelihood of the occurrence of high-water resources in a given 

region. Most studies in this area have focused on the assessment of inundation susceptibility at a 

specific time. However, the continuous assessment of inundation susceptibility is an effective 

framework to better support decision makers to understand the causes of increased inundation. 

Nguyen et al. (2022a) showed that constructing strategies that mitigate against inundation is more 

effective when susceptibility is continuously evaluated. Penning‐Rowsell et al. (2013) also indicated 

that continuous inundation assessment plays an important role in building appropriate strategies to 

reduce inundation damage. 

Previous studies have used different methodologies to assess inundation susceptibility. These can 

be divided into three main groups: hydrodynamic, remote sensing and GIS, and machine learning. 

The hydrodynamic approach – which features models such as Mike (Tansar et al. 2020, NGUYEN et 

al. 2023), HEC-RAS (Ongdas et al. 2020, Psomiadis et al. 2021), and SWAT (Jodar-Abellan et al. 

2019, Liu et al. 2022)– uses mathematical equations to predict the flow of water in rivers, streams, 

and other waterways, and the relationship between river flows and precipitation. Although this 

approach has been used extensively in previous studies, the hydrodynamic model requires detailed 

topographical, meteorological, and other terrain data (Nguyen et al. 2021). Therefore, these models 

are limited to application in small areas or locations where there is plenty of data. The construction 

of hydrodynamic models also requires comprehensive knowledge of the relevant hydrological 

parameters. In recent years, with the development of remote sensing data and the data sharing policies 

of agencies such as NASA and NOAA, remote sensing and GIS have become a more viable option 

for assessing inundation susceptibility over a wide region. However, this approach is limited in its 

ability to identify the relationship between inundation and its causes (Wang and Xie 2018). It is clear, 

then, that these approaches will likely be superseded by more state-of-the-art methods. 

A number of recent studies have used data-driver, integrated with remote sensing data, to 

continuously assess inundation susceptibility by analyzing the relationships between past inundation 

events and conditioning factors (Bui et al. 2020). Data-driver approach requires less input data than 

hydrodynamic models. This approach was separated by the statistical models and machine learning. 

Statistical models such as logistic regression (Al-Juaidi et al. 2018, Lim and Lee 2018), frequency 

ratio (Ghosh et al. 2022a), weight of evidence (Hong et al. 2018), fuzzy logic (Sahana and Patel 2019), 

and AHP (Swain et al. 2020) have shown promise, but in the context of climate change and 

urbanizations, inundation is becoming ever more complicated and non-linear; therefore, statistical 

models cannot achieve adequate levels of accuracy in their predictions. The machine learning 

approach has been receiving a great deal of attention within the scientific community. This approach 

includes models such as support vector machine (SVM) (Mohammady et al. 2019), random forest 

(Lee et al. 2017), bagging (Talukdar et al. 2020), adaboost (Tien Bui et al. 2016), artificial neural 

networks (Priscillia et al. 2021) and decision tree (Khosravi et al. 2018, Pham et al. 2021a). There is, 

however, no universal consensus as to which algorithm(s) – from the thousand available options – 

may best simulate inundation susceptibility in a given region. 

In summary, there are two major gaps in the literature. First, most studies focus on the assessment 

of inundation susceptibility at a specific time, when assessment at different times has been shown to 

be important in the development of appropriate inundation prevention measures. Second, the selection 

of appropriate methods to predict the inundation susceptibility in a specific region continues to be a 

major challenge for the scientific community. In response to these two issues, this study has aimed to 

carry out (i) a continuous inundation susceptibility assessment for the period 2000–2020 and (ii) a 

comparison of models to select the best one for predicting inundation susceptibility. Although this 

study was carried out in a province in Vietnam and was focused on inundation, our findings may be 

applied in many other geographical regions and used to evaluate other natural hazards.  
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2. STUDY AREA AND DATA USE  

2.1. Study area 

Vinh Phuc province is located in the Red River Delta, in the Northern Midlands and Mountains 

region of Vietnam. It covers an area of approximately 1,236 km² (Fig. 1). The province descends 

from the northeast to the southwest, and its diverse topography can be divided into three categories: 

high mountains, middle lands, and plains. The high mountain region, with an elevation ranging from 

200 to 1000 m, covers 65,500 ha of the province. The middle lands, with an elevation from 20 to 200 

m, occupy 25,100 ha, and the plains, with an elevation of 0 to 20 m, occupy 33,500 ha. Vinh Phuc is 

located in the tropical monsoon climate region and has an average annual rainfall of 1400–1900 mm, 

mainly concentrated between May and October, accounting for 80% of the total rainfall. The dry 

season lasts from November to April and accounts for the remaining 20%. The river system in the 

study area is dense and the hydrological regime is mainly depending on the flow in two main river 

systems named the Red River and the Phan - Ca Lo River. According to statistics from the Forest 

Protection Department, the forested area of Vinh Phuc accounts for about 22% of the province. 

However, in recent years, under the pressure of a population explosion and accelerating urbanization, 

the forest area has been seriously reduced. This is thought to have been the main cause for the 

increasing severity of inundations and landslides in the province.  

 
Fig. 1. The location of Vinh Phuc province. 

2.2. Data use 

Inundation inventory 

Inundation inventory preparation is essential in building a inundation susceptibility model and 

describes the relationships between past inundation events and conditioning factors (Nguyen et al. 

2022b, Yaseen et al. 2022). In this study, 106 inundation points were collected from different sources 

such as the province’s Department of Natural Resources and Environment, field missions in 2021 

and 2022, and Sentinel 1A imagery. The construction of inundation susceptibility maps requires the 

binary classification of inundation inventory into two groups: inundation points and non- inundation 

points. Non- inundation points were taken from high-altitude locations that have never been affected 

by inundation. The inundation inventory was divided into two groups: 70% of the data for training 

and 30% for validation). 

Conditioning factors 

The construction of inundation susceptibility models is very complicated because it requires data 

regarding environmental, hydrological, climatic, and anthropic factors (Ghosh et al. 2022c, Nguyen 
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2022b). The selection of appropriate conditioning factors is critical and determines the accuracy of 

the inundation susceptibility model. After reviewing the existing literature, 11 conditioning factors 

were selected, namely altitude, slope, aspect, curvature, distance to river, distance to road, NDVI, 

NDBI, rainfall, soil type, and TWI. All conditioning factors were transformed to raster format at a 

resolution of 10 m (Fig. 2). 
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Fig. 2. Conditioning factor used for the flood susceptibility model. 
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Elevation, slope, aspect, curvature, and TWI were extracted from a DEM constructed by 

topographic map with the scale of 1:50,000 m. Note that the map was obtained from the Ministry of 

Natural Resources and Environment. Distance to river and distance to road were extracted from the 

topographic map. NDVI and NDBI in 2000, 2010, and 2020 were calculated from Landsat 7 and 8 

images. Rainfall in 2000, 2010, and 2020 were downloaded from https://chrsdata.eng.uci.edu/. Soil 

type was collected from Ministry of Natural Resources and Environment. 

Inundation likelihood is inversely proportional with altitude. The south of the area is 

characterized by flat and low land, so this region is often affected by inundation (Dahri et al. 2022). 

The altitude value in the province ranged from 0 to 1650 m. Slope directly influences the probability 

of inundation occurrence as it controls flow velocity. The probability of occurrence of inundation is 

inversely proportional with slope (Arabameri et al. 2022). In the study area, the slope value ranged 

from 0 to 70 degrees. Aspect is indirectly related to the occurrence of inundation because it influences 

the direction of flow and the maintenance of soil moisture (Nguyen 2022a). In the study area, the 

aspect value ranged from 0 to 360 degrees. Curvature plays an important role in assessing the 

likelihood of inundation occurrence. It is directly linked to the heterogeneity of each region. The 

curvature value is inversely proportional to the occurrence of inundation (Sachdeva and Kumar 2022). 

In the study area, the curvature value ranged from -13 to 19. 

TWI is a measure of how likely a region is to experience inundation. The higher the value of 

TWI, the higher the probability of flood or inundation (Tehrany et al. 2014). In the study area, the 

TWI was found to range from 1.5 to 29. The type of soil in a region plays a significant role in the 

likelihood of inundation. This is because soil affects the rate of infiltration (water soaking into the 

ground) and the formation of runoff (water flowing on the surface) (Bui et al. 2019). In the study area, 

the soil types were classified into five groups: plinthic acrisols, ferralic acrisols, fluvisols, dystric 

fluvisols, and humic acrisols.  

NDVI represents the density of vegetation in an area and directly influences the infiltration 

capacity and the speed of flow. Regions with low vegetation density are more vulnerable to inundation 

(Nachappa et al. 2020). In the study area, the range of NDVI values in 2000, 2010, and 2020 were -

1–0.65, 0–0.5, and -0.7–0.3 respectively. NDBI represents the density of construction in a specific 

region, which influences the probability of inundation as concrete constructions do not allow water 

to seep into the ground (Saha et al. 2021, Nguyen 2022b). In this study, the value ranges of NDBI in 

2000, 2010, and 2020 were -0.9–0.9, -0.35–0.5, and -0.4–0.37 respectively.  

Rainfall was selected because precipitation of high intensity over a short time are closely linked 

with river flow and therefore inundation susceptibility (Band et al. 2020). In the study area, value 

ranges of rainfall 2000, 2010, and 2020 were 1500–1700 mm, 1500–1700 mm and 1700–2100 mm 

respectively. Distance to road directly influences the capacity of infiltration and evacuation of water 

(Linh et al. 2022).  

In the study area, distance to road ranged from 0 to 4800 m. Because most inundation occurs 

along the rivers, the further the region is from a river, the less likely it is to inundation (Chowdhuri et 

al. 2020). In this study, the distance to river value ranged from 0 to 2500 m. 

3. METHODOLOGY 

We applied machine learning and remote sensing in our study. This process was divided into four 

main steps: (i) collection and pre-processing of input data, (ii) construction of inundation 

susceptibility models, (iii) assessment of the accuracy of the proposed models, and (iv) analysis of 

the effects of climate change on inundation susceptibility in the period 2000–2020 (Fig. 3). 

(i) Collection and pre-processing of input data 

The input data of the inundation susceptibility model constituted two groups: inundation 

inventory and conditioning factors. Inundation inventory comprises historical inundation - and non- 

inundation points, which were coded as 1 and 0, respectively. These points were collected from 

different sources: reports from the Department of Natural Resources and Environment, field missions, 

and Sentinel 1A imagery. 
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While this study assesses inundation susceptibility continuously over the period 2000–2020, 

theoretically, the conditioning factors should be collected from 2000 to 2020 to use as input data to 

assess changes in inundation susceptibility over this period. However, due to difficulties in data 

collection, we hypothesize that the topographic features did not change over the period in question, 

and that the relevant changes were instead in hydro-meteorological conditions and anthropic activity. 

These factors were calculated from the 1/50,000 m topographic map and from remote sensing data. 

(ii) Building the inundation susceptibility model 

206 inundation points and 11 conditioning factors were used as input data for the inundation 

susceptibility model. This data was divided into two groups: 70% to train the models (the adjustment 

of hyper-parameters) and 30% to evaluate the accuracy of the models. Other rates (50/50, 60/40, and 

80/20) were tested, but 70/30 performed better. Building inundation susceptibility models can be 

challenging when data is limited. In order to validate the model, a 10-fold cross-validation method 

was applied to the dataset. The results of this validation were used to evaluate the model's performance 

through various performance indices. To find the best model, Bayesian optimization was used to 

select the optimal hyper-parameter values. Additionally, different models such as SVM, catboost 

(CB), EXT, adaboost, random forest, and xgboost were tested, and ultimately SVM, CB, and EXT 

were chosen as the best performing models. The accuracy of the models is impacted by the process 

of tuning their hyper-parameters. RMSE was used as the objective function to find the hyper-

parameters that resulted in the highest accuracy after the training process. The hyper-parameters for 

the models SVM, CB, and EXT were determined through trial and error and set to C=0.1, Gamma=0.5 

for SVM; depth=3, learning_rate=0.01 for CB; and max_depth=2, min_samples_split=2 for EXT. 

(iii) Evaluation of the accuracy of the proposed models 

The statistical indices AUC, RMSE, R², and MAE were applied to evaluate the inundation 

susceptibility models. 

(iv) Analysis of the effects of climate change on the inundation susceptibility from 2000 to 2020 

After validation of the inundation susceptibility models, the inundation susceptibility maps for 

2000, 2010, and 2020 were generated using SVM, CB, and EXT. The maps were compared to assess 

changes and how they were connected with climate change. 

 

3.1. Support vector machines (SVMs)  

SVMs are supervised machine learning models that can solve mathematical discrimination and 

regression problems. They were conceptualized in the 1990s from a statistical learning theory 

proposed by (Cortes and Vapnik 1995)  . The models have the ability to work with high-dimensional 

data and achieve good results. Requiring only a small number of parameters, they are appreciated for 

their ease of use. The main operating principle of the SVM model is the search for a hyperplane 

(feature space) in which the data is separated into several classes whose boundary is as far as possible 

from the data points (or "maximum margin") (Tehrany et al. 2014). To achieve this, SVMs use 

kernels, i.e. mathematical functions to project and separate data in vector space, with "support 

vectors" being the data closest to the border. The furthest boundary of all the training points is optimal 

and therefore presents the best capacity for generalization (Choubin et al. 2019). The accuracy of the 

SVM model is characterized by two main hyper-parameters: gamma and C. The adjustment of the C 

parameter aims to eliminate outliers in the data. Increasing the value of C makes the SVM model able 

to choose the hyperplane to better separate the data points, while the gamma parameter determines 

the number of data points in the construction of the hyperplane. If the value of gamma is low, all data 

points far from the median will be used to calculate the median, and vice versa (Nguyen 2022a). In 

this study, using trial and error, the value of C and gamma were set at 0.1 and 0.5 respectively.  

3.2. Catboost (CB) 

 HGS is a swarm-based optimizer algorithm, first introduced by Yang et al. (2021). This 

algorithm is inspired by the behavior of animals in a state of starvation. In order to find food and 

improve their survival, animals tend to cooperate with each other. Stronger animals have a greater 

heart capacity to obtain food than weak animals (Yang et al., 2021). In nature, animal behavior is 
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influenced by many different factors, a primary one being hunger. When the food source is limited, it 

leads to competition between animals – a “hunger game.” The HGS algorithm is divided into two 

stages: the first stage simulates the process of cooperation between animals to find a food source; the 

second step describes the animals’ activities in a state of starvation (AbuShanab et al., 2021; Yang 

et al., 2021). The HGS algorithm has proven effective in the technical assessment and analysis of 

natural hazards (Nguyen, 2022b). 

3.3. Extratrees (EXT)   

 EXT is a powerful algorithm developed by an unknown creator. It is used to address both 

classification and regression problems by using decision trees (Sachdeva and Kumar 2022). The EXT 

algorithm builds multiple decision trees from the original training sample, and each node in the tree 

selects the best feature from a random set of K features to split the data based on mathematical indices. 

Like the random forest algorithm, the EXT algorithm generates several decision trees by randomly 

sampling the data, leading to unique patterns in each tree.  

 Predictions are made through majority voting from the multiple decision trees (Heddam et al. 

2020, Heddam 2023). The precision of the EXT model is influenced by the hyper-parameters 

max_depth and min_samples_split. In this study, the hyper-parameters were determined through trial-

and-error to be max_depth=2 and min_samples_split=2. 

                               

3.4. Performance assessment 

Assessing the fit of a model is a crucial step in model building. In this study, the ROC, AUC, 

RMSE, MAE, and R² indices were used to evaluate the fit of the model, which have been widely used 

in previous studies. The ROC curve illustrates the performance of a model by plotting the true positive 

rate on the Y-axis and false positive rate on the X-axis.  

The AUC (area under the curve) ROC summarizes the overall performance of a classification 

model, with a value ranging from 0 to 1. A value of 1 indicates a perfect model, while 0.5 represents 

a non-informative model (Nachappa et al. 2020, Rehman et al. 2022).  

RMSE and MAE give insight into the dispersion or variability of prediction accuracy by 

measuring the errors between the predicted and observed values (Chapi et al. 2017, Wang et al. 2019): 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑚
∑(𝑌𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑌𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)2

𝑚

𝑖−1

 

𝑀𝐴𝐸 =  
1

𝑚
∑ |𝑌𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑌𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑|

𝑚

𝑖−1

 

where Yiobserved is the value of the ith observation from the validation dataset and Yipredicted is the 

predicted value for the ith observation. 

4. RESULTS AND DISCUSSIONS 

4.1. Rainfall change between 2000 and 2020 

Fig. 4 shows the annual precipitation in Vinh Phuc province between 2000 and 2020. The annual 

precipitation in 2000 ranged from 1542.38 to 1636.86mm, in 2010 from 1439.8 to 1647.18 mm, and 

in 2020 from 1748.64 to 2025.46 mm. During the period 2000–2010, precipitation increased in the 

northern mountainous region and decreased in the southern region. From 2010 to 2020, precipitation 

became stronger and was concentrated in the southern region. 



102 

 

 
Fig. 4. Rainfall in Vinh Phuc province between 2000 and 2020. 

4.2. Feature selection analysis 

Assessing the importance of each conditioning factor is essential in the process of building a 

inundation susceptibility model. In this study the random forest technique was used to assess the 

importance of each factor. The results (Fig. 5) showed slope (0.3), altitude (0.265), TWI (0.15), and 

rainfall (0.11) to be the most important predictors of inundation occurrence, followed by NDVI (0.06), 

distance to river (0.05), curvature (0.025), soil type (0.02), distance to road (0.01), and NDBI (0.005). 

Aspect had no influence on the occurrence of inundation and so was eliminated from the inundation 

susceptibility model.  

 

Fig. 5. Feature selection and ranking using random forest.  

4.3. Model comparison 

Ideally, a machine learning model should not be evaluated on the same dataset it uses for training, because 

the model will overfit the dataset and not perform better than the previous model. Therefore, for a model to be 

evaluated objectively, it must be evaluated on a test dataset that has not been used before. Fig. 6 shows the AUC-

ROC results for the training dataset and validating dataset. According to the AUC results for the training dataset, 

the CB model (AUC=0.99) outperformed SVM (AUC=0.98) and EXT (AUC=0.98). Similarly, for the validating 

dataset the AUC value for the CB model was 0.99, beating SVM (AUC=0.97) and EXT (AUC=0.97). Although 

all the proposed models returned results with high accuracy, the CB model was the best performing in the study 

area. 
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  a) 

   b) 

Fig. 6. The validation of three inundation susceptibility models using ROC based on training dataset 

(a) and validating dataset (b) 

Table 1 presents the value of RMSE, MAE, and R² for the training dataset and validating dataset. For the 

CB model, the training dataset results for RMSE, MAE, and R² were 0.12, 0.05, and 0.95 respectively, 

outperforming SVM (RMSE=0.14, MAE=0.06, R²=0.91) and EXT (RMSE=0.24 , MAE=0.21, R²=0.75). For 

the validating dataset, for the CB model, the value of RMSE (0.17), MAE (0.07), and R² (0.96) was better than 

the other models, followed by SVM (RMSE=0.18, MAE=0.08 and R²=0.96) and EXT (RMSE =0.26, MAE=0.22 

and R²=0.72), respectively. 

Table 1.  

The accuracy assessment of three inundation susceptibility models  

for the training dataset and the validating dataset. 

 
Training dataset Validating dataset 

RMSE MAE AUC R² RMSE MAE AUC R² 

SVM 0.14 0.06 0.98 0.91 0.18 0.08 0.97 0.96 

CB 0.12 0.05 0.99 0.95 0.17 0.07 0.99 0.96 

EXT 0.24 0.21 0.98 0.75 0.26 0.22 0.97 0.72 

4.4. Inundation susceptibility prediction 

After validation, the models were used to evaluate inundation susceptibility in 2000, 2010, and 

2020. The models were fed pixels from the study area and the 11 conditioning factors for each of 

2000, 2010, and 2020. Although there were small differences between each of the models’ 

predictions, inundation was forecast to occur mainly in the southern region where there is low 

elevation and slope. The area of very low inundation susceptibility increased from 2000 to 2020, 

while the high and very high risk areas decreased in size. 

For the SVM model, the very low area increased from 264.736 km² in 2000 to 345.537 km² in 

2010 and 369.0107 km² in 2020. The low area decreased from 124.6562 km² in 2000 to 121.4723 km² 

in 2010 and increases to 125.3921 km² in 2020. Similarly, the moderate risk area decreased from 

127.5294 km² in 2000 to 121.6532 km² in 2010 and then grew to 123.8686 km² in 2020. The high 

risk area decreased from 188.7407 km² in 2000 to 183.5609 km² in 2010 and again to 170.7813 km² 

in 2020. The very high risk area shrank from 514,3594 km² in 2000 to 447,712 km² in 2010 and then 

further to 430,8828 km² in 2020.  

For the CB model, the very low inundation susceptibility area decreased from 414.1629 km² in 

2000 to 411.6574 km² in 2010; the 2020 figure stayed almost the same at 411.689 km². The low risk 

area grew from 101.0637 km² in 2000 to 115.8995 km² in 2010 and decreased slightly to 114.0801 
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km² in 2020. The area of moderate inundation susceptibility decreased from 115.532 km² in 2000 to 

105.312 km² in 2010 and again to 104.2839 km² in 2020. The high risk area increased from 125.194 

km² in 2000 to 128.2546 km² in 2010 and again to 131.2367 km² in 2020. The very high susceptibility 

area shrank slightly from 464.0691 km² in 2000 to 458.812 km² in 2010 and then to 458.6458 km² in 

2020. 

For the EXT model, the very low area decreased from 235.4863 km² in 2000 to 232.4067 km² in 

2010 and then increased significantly to 271.7133 km² in 2020. The low area grew from 171.2381 

km² in 2000 to 177.6635 km² in 2010 and shrank slightly to 174.3416 km² in 2020. The moderate 

areas diminished from 225.0975 km² in 2000 to 191.1555 km² in 2010 and grew again to 213.1152 

km² in 2020. The high inundation susceptibility area increased from 252.6806 km² in 2000 to 

265.4405 km² in 2010 and decreased to 236.7902 km² in 2020. The very high-risk area decreased 

from 335.5191 km² in 2000 to 265.4405 km² in 2010 and then increased to 323.9735 km² in 2020 

(Table 2, Fig. 7 and 8). 
Table 2. 

The distribution of five classes of inundation susceptibility zones as generated by SVM, CB, and EXT. 

  Very low 

(Km²) 

Low (Km²) Moderate 

(Km²) 

High (Km²) Very high 

(Km²) 

SVM 2000 264.736 124.6562 127.5294 188.7407 514.3594 

2010 345.537 121.4723 121.6532 183.5609 447.712 

2020 369.0107 125.3921 123.8686 170.7813 430.8828 

CB 2000 414.1629 101.0637 115.532 125.194 464.0691 

2010 411.6574 115.8995 105.312 128.2546 458.812 

2020 411.689 114.0801 104.2839 131.2367 458.6458 

EXT 2000 235.4863 171.2381 225.0975 252.6806 335.5191 

2010 232.4067 177.6635 191.1555 265.4405 265.4405 

2020 271.7133 174.3416 213.1152 236.7902 323.9735 
 

    

 

Fig.7. The inundation susceptibility zones under five classes produced by SVM, CB and EXT. 
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Fig. 8. Inundation  susceptibility in 2000, 2010, and 2020 as generated by SVM, CB, and EXT. 
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5. DISCUSSION  

5.1. The significance of results  

The inundation is considered the most destructive natural hazard in the world, causing significant 

damage to human life and the economy of the country, especially in the coastal country. These 

damages are more and more serious in the last years due to climate change. So the understanding of 

effects of climate change on inundation susceptibility have received great attention from the global 

scientific community, particularly with a view to better support those tasked with designing 

appropriate strategies for inundation control in the context of climate change (Li et al. 2020, Nguyen 

et al. 2022a). This study develops a theoretical framework with which to assess the effects of climate 

change in general, and precipitation in particular, on inundation susceptibility in Vinh Phuc province, 

using machine learning and remote sensing. Although several previous studies have analyzed 

inundation susceptibility, most of these focused on the assessment of susceptibility for a specific time. 

Continuous inundation susceptibility assessment is necessary to consider more fully the effects of 

climate change on future flood or inundation. The results in our study indicate that the relationships 

between climate change and inundation play a key role in the strategy of flood risk management in 

the future, can be used by decision makers and local authorities in the construction of flood risk 

reduction strategies.  

 

5.2. Inner validation of the results 

The results support the first hypothesis in the introduction section that the inundation 

susceptibility exhibits strong relationships with natural and human factors as the slope, elevation, 

TWI and rainfall. For inundation susceptibility model development, studies have indicated that low 

quality of data has a negative effect on the quality of inundation susceptibility models and that, 

therefore, pre-processing of the data is critical (Du et al. 2023). In this study, random forest was used 

to assess the importance of each of 11 conditioning factors. It should be noted that the importance of 

conditioning factors depends on the natural and socio-economic condition of each region and the 

method used. Previous study, Islam et al. (2021) used information gain ratio to assess the importance 

of 10 conditioning factors.  

The results highlighted that LULC, distance to road, and elevation were three most important 

factors in the construction of a model of inundation susceptibility for the Teesta sub-catchment of 

northern Bangladesh. Pham et al. (2021b) applied frequency ratio to rank 16 conditioning factors and 

the results showed that elevation, rainfall, and slope were most important for their model for the Vu 

Gia–Thu Bon watershed in Vietnam. Huu Duy Nguyen (2022) used the random forest technique to 

analyze the importance of 13 conditioning factors and reported that LULC, elevation, and slope were 

most important for his map in Vietnam’s Ha Tinh province.  

In this study, slope, elevation, TWI, and rainfall were the most important factors on the 

probability of inundation occurrence in Vinh Phuc province. Slope and elevation scored highest as 

they have critical effects on flow regime  and flow velocity. TWI was ranked third as it describes the 

wetness of a given area and therefore the soil saturation capacity.  

Rainfall was ranked fourth in importance. In Vietnam, there are three main types of inundation: 

fluvial, coastal, and pluvial. Coastal inundation does not exist in the study area because Vinh Phuc 

province is not influenced by the sea and the tide. Fluvial inundation is insignificant because the study 

area is not affected by major rivers. The province is often hit by heavy rainfall over a short period, 

which causes inundation. In recent years, inundations  have also increased in intensity and number 

due to the reduction of surface vegetation, which influences the flow regime, and soil saturation 

capacity. This is why NDVI was ranked fifth of the factors featured.  

Distance to river, curvature, soil type, distance to road, and NDBI were ranked from six to ten 

respectively, because the inundation in the study area mainly occurs in the low altitude area during 

the period of heavy rainfall. Heavy rainfall and low altitude are the main factors for the occurrence of 

inundation. Aspect did not influence the probability of inundation occurrence in the study area. It is 

worth noting that the models used in this study are driver-models, therefore, the importance of each 
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of the conditioning factors depends on the statistical relationship between past events and 

conditioning factors. In this way, inundation in the study area can be seen mainly to depend on four 

factors: elevation, slope, TWI, and rainfall. 

This study also confirms that all machine learning models were successful in assessing the effects 

of climate change in inundation susceptibility in Vinh Phuc province. Previous studies have 

demonstrated that model accuracy depends on model structure and the data characteristics of each 

region (Bui et al. 2020). Therefore, the selection of models is one of the most important steps. In this 

study, the models SVM, CB, and EXT were selected. Of the three, CB performed best. CB is 

considered to be one of the most powerful and precise machine learning tools as, unlike other machine 

learning tools, it does not need to run multiple trials to get good results. It provides optimum models 

from the first round (Lu et al. 2022). The SVM model was the second best performing. It not only 

performs well with large datasets, but also with small datasets. Moreover, SVM has the advantage of 

reducing dataset noise and has high generalizability (Deka 2014). EXT was third best performing. 

Although it has advantages such as generalizability and bias reduction, it struggles with nonlinear 

problem solving (Geurts et al. 2006).  

 

5.3. The external validation of results 

The results of this study were unexpected, because the initial hypothesis was that inundation 

susceptibility in the study area had increased from 2010 to 2020 due to the change in precipitation in 

the context of climate change. This trend is typical of several regions in the world: Nguyen et al. 

(2022a) pointed out that inundation susceptibility in Nhat Le–Kien Giang had increased due to the 

change in precipitation in the context of climate change. Previous study, Chen et al. (2022) described 

an increase in inundation risk in Taiwan over the period 1979–2099. Javari (2022) found inundation 

risk in Iran to have grown due to the increase in precipitation between 1975 and 2017. However, in 

this study, although the increase in precipitation from 2010 to 2020, however, in this period, good 

planning can reduce the effects of inundation. 

 

5.4. The importance of results 

The results of this study contribute important aspects of flood risk management strategies. The 

construction of the models in this study represents a high quality tool to assess the effects of climate 

change on floods or inundations. The models proposed in this study showed a more reliable 

performance than the previously cited studies. We can conclude that this is the first time that these 

models are used to build a inundation susceptibility map and assess the effects of climate change on 

inundation susceptibility. In addition, our results are important in answering the first question which 

has not been addressed in previous studies. Good land planning plays an essential role in reducing the 

flood risk. However, the success of putting in place good planning depends on determining the areas 

prone to flood and the impact of climate change. This can be achieved by understanding inundation 

susceptibility in a complex way in the context of climate change, as well as limiting new construction 

in areas with high or very high inundation susceptibility. 

 

5.5. Limitation and Future Research 

This study presents the general limitation related to the use of the data. This study uses Landsat 

08 with the resolution of 30m to extract the NDVI and NDBI in 2020. However, several studies have 

pointed out that the Sentinel 2A can present the information in more detail. In addition, non-flood or 

non-inundation points were selected in the never-flooded area. However, given the context of climate 

change and the non-linear nature of the flood or inundation phenomenon, this leads to uncertainties 

in the selection of these points. Ultimately, flood intensity is strongly influenced by climate change 

scenarios and land use. Therefore, it is necessary to evaluate the scenarios of this change on floods in 

future studies. These results may be important for policy makers and local authorities to promote 

sustainable land use planning in the future. 
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6. CONCLUSIONS 

Every year, the flood causes major damage to human life and the country's economy in the world. 

With the geographical location, Vietnam is considered a country most affected by this natural hazard. 

Among the provinces, Vinh Phuc province is one of the provinces most damaged by inundation, 

especially in the context of climate change. This study assesses the impacts of climate change in 

general and rainfall change in particular on inundation susceptibility in Vinh Phuc province over the 

period 2000–2020, using machine learning (SVM, CB, and EXT) and remote sensing. The results of 

this study can help managers and planners understand the causes of changes in inundation 

susceptibility and thus develop appropriate strategies and policies to reduce future inundation damage. 

All the models proposed in this study used good fit to assess the effects of climate change and 

rainfall on inundation susceptibility from 2000 to 2020. All three achieved AUC of over 0.95. Of the 

three, CB was most accurate (AUC=0.99). SVM and EXT both scored AUC=0.98. The models 

proposed in this study can be used to assess the effects of climate change on inundation susceptibility 

in other regions of the world, particularly in regions with limited data. 
In general, the size of the areas of very low and low inundation susceptibility increased in from 

2000 to 2020, while the high and very high risk areas decreased, due to changes in rainfall, vegetation, 

and infrastructure. 

With the development of remote sensing data covering the entire planet, the approach used in this 

study can be easily applied to assess the effects of climate change on other natural hazard in different 

regions of the world. The models proposed in this study provide good results at large scales, which 

can help decision-makers and local authorities to determine the regions likely to be affected by climate 

change in large-scale. 

The findings of this study may support managers and planners to implement appropriate measures 

in areas with high and very high inundation susceptibility, to reduce damage to human life and 

property. Moreover, the theoretical framework in this study highlights the effects of the change in 

rainfall on inundation susceptibility. 
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