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ABSTRACT 

This study integrated in situ water quality measurements with Landsat 8 Operational Land Imager 

(OLI) data to assess the water quality of the Khadakwasala Reservoir in Pune, India. Stepwise 

regression analysis was applied to develop models correlating Landsat-derived spectral indices with 

key water quality parameters, including turbidity, chlorophyll-a, dissolved oxygen (DO), biochemical 

oxygen demand (BOD), and chemical oxygen demand (COD). The models achieved predictive 

accuracy with R2 values of 0.85 for turbidity, 0.90 for chlorophyll-a, 0.65 for DO, 0.64 for BOD, and 

0.84 for COD. Turbidity was identified as a key predictor for the non-sensitive parameters (DO, BOD, 

COD). These models provide a scalable method for monitoring water quality, facilitating broader 

spatial assessments using satellite data. The dataset supports the reuse of remote sensing data for water 

quality management and environmental monitoring. The distributed images of water quality 

parameters can be obtained at the repository address mentioned in the data availability section.  

Key-words: Water Quality Assessment; Remote Sensing of Lakes; Landsat 8/9 OLI; Surface Water 

Quality Parameters; Stepwise Regression Model; Chlorophyll, Turbidity; Khadakwasla Reservoir 

1. INTRODUCTION 

Access to clean and safe water is of paramount importance for human health and ecological 

integrity. Surface water bodies, including reservoirs, are vital freshwater resources, but their quality 

is increasingly threatened by anthropogenic activities and natural processes (Akhtar et al., 2021). 

Monitoring and evaluation of water quality parameters is necessary to Effective water resource 

management. 

Traditional water quality monitoring approaches often rely on in situ sampling and laboratory 

analysis, which can be time consuming, expensive, and spatially limited (Palmer et al., 2015; 

Olmanson et al., 2015; Chang et al., 2014). Remote sensing techniques, employing satellite imagery, 

offer a spatially comprehensive and cost-effective alternative for assessing water quality parameters 

over large geographical areas, (Olmanson et al., 2015; Chang et al., 2014. Landsat satellites, with 

their long-term data archives and moderate spatial resolution, have proven invaluable for monitoring 

inland water bodies (Vakili & Amanollahi, 2020; Wang et al., 2019). 

The cornerstone of water quality recovery relies on establishing correlations between the 

concentrations of water components and the scattered signals - in particular, the radiance emitted by 

the water as observed by sensors, (Kirk, 2010). Models for retrieval can be built based on the 

relationship of underlying optical properties (IOPs) to remote sensing reflectance, because IOPs are 

unique optical properties of water that are independent of external conditions and depend entirely on 

the composition of the water body. Consequently, it becomes feasible to directly retrieve water quality 

parameters such as Chlorophyll-a (Chl), suspended matter (SM), and colored dissolved organic matter 

(CDOM), (Palmer et al., 2015; Wang et al., 2017; Li et al., 2018).  
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Water constituents devoid of optical activity like Total Nitrogen (TN), Total Phosphorus (TP), 

Chemical Oxygen Demand (COD), and Dissolved Oxygen (DO), which lack direct optical 

characteristics, can be approached either by exploring interrelationships between various substances 

in water or by deploying Artificial Intelligence (AI) techniques, (Sun et al., 2014; Sharaf El Din et 

al., 2017).  

This study focused on a conventional regression-based approach to link optically sensitive 

parameters (turbidity, chlorophyll a) with non-optically sensitive parameters (DO, BOD, COD). 

While several recent works have highlighted the potential of artificial intelligence (AI) frameworks 

for indirect estimation of non-optically sensitive parameters, such approaches often face data 

limitations and require large, diverse training sets that were not available for the Khadakwasla case 

study. Therefore, instead of AI-driven models, our study demonstrates how statistically robust 

relationships can be derived between optically sensitive parameters and optically non-sensitive 

parameters to predict. This approach is particularly advantageous in data-limited settings, as it avoids 

the overfitting risks and transferability issues often associated with AI models. 

However, quantifying a wide range of water quality parameters is challenging, particularly when 

calculating water-leaving reflectance due to the complex interactions of radiation among the 

atmosphere, water surface, and water body across various wavelengths. Generally, remote sensing-

based water quality retrieval methods can be classified into empirical, physical, semi-empirical, and 

intelligent models, with AI methods standing out as a distinct empirical approach that uses statistical 

techniques (Palmer et al., 2015; Wang & Yang, 2019). Many reviews have highlighted the major 

advancements in water quality retrieval using remote sensing, especially focusing on different 

retrieval methods and the use of multi-source remote sensing data (Palmer et al., 2015; Chang et al., 

2014; Wang et al., 2019; Chen et al., 2013; Kuhwald & Oppelt, 2016; Sagan et al., 2020; Chawla et 

al., 2020).  

This study aims to examine the Khadakwasla Reservoir water quality. The reservoir serves as a 

primary drinking and farming water source in Pune, Maharashtra, which is found in India. The study 

has combined the in situ physical measurements of water quality parameters from Landsat 8 

Operational Land Imager (OLI) surface reflectance data to acquire a wide-ranging knowledge about 

the lake’s status on water quality. Furthermore, this integration leverages the strengths of both 

methods, resulting in a more comprehensive assessment with improved spatial accuracy. 

This project involves the estimation of quality parameters of water such as chlorophyll (Chl), 

chemical oxygen demand (COD), turbidity (Tur), bio chemical oxygen demand (BOD), and dissolved 

oxygen (DO) based on sampling points of choice of the reservoir. The main task of the investigation 

is to use the pre-processed Landsat 8 Operational Land Imager (OLI) surface reflectance data to 

estimate the parameters of surface water quality (SWQP). Analytical approaches aimed at the 

statistical testing the relationship between the in-situ water quality measurements and the 

corresponding Landsat 8 OLI surface reflectance values will be the regression analytical methods. 

The data obtained as a result will be aimed at providing a methodology to identify water quality in 

Khadakwasla Reservoir through the combination of in-situ measurements and remote sensing 

observations. The developed statistical association among parameters of in-situ water quality and 

those provided by the Landsat 8 OLI spectral reflectances make it possible to form the predictive 

models which will be able to approximate the spectra of water quality parameters in different across 

the reservoir sectors. Such a strategy is likely to work together with effective water resource 

management methods. 

2. STUDY AREA AND METHODOLOGY  

2.1.  Study area  

The Khadakwasala Reservoir is selected as a study area in this study due to easy accessibility for 

in-situ water sampling for testing water quality and wide spatial coverage (Fig. 1). As per the Water 

Resource Department data, the surface area of the reservoirs varies from ~ 8.5 Sq.km to ~12.0 Sq.km 

corresponding to the seasonal variation. This spatial extent is enough to use the high and moderate 

resolution satellite for analysis. The Pune metropolitan city and its surrounding areas primarily 

depend on the Khadakwasla reservoir for their water needs.  
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Fig. 1. Location of the Study Area: Khadakwasala Reservoir (Sampling Location :18.4390 N / 73.7720 E). 

 

It is a source of water for domestic needs, agricultural needs, industrial needs, and hydroelectric 

power generation. For these reasons, understanding Khadakwasala’s storage potential becomes 

integral to managing water resources within the locality. The Khadakwasala Reservoir was built in 

1879 near Pune. Maharashtra, India, primarily to meet Pune's drinking water source and irrigation 

needs. It is located on the Mutha River and holds an approximate storage capacity of 2.46 million 

cubic meters. 

2.2. Methodology 

The methodology presented in the flowchart (Fig. 2) describes an integrated approach combining 

remote sensing and in-situ data for the prediction of surface water quality parameters (SWQPs). This 

process involves the use of Landsat 8/9 imagery along with physical water quality measurements. 

Satellite data goes through pre-processing steps, including geometric, radiometric, and atmospheric 

corrections, as well as masking of water bodies to obtain the reflectance of the upper atmosphere 

(ToA). Concurrently, in-situ measurements are gathered from the Khadakwasla Dam through 

physical sampling and laboratory analysis to determine values for turbidity (Tur), chlorophyll-a (Chl), 

dissolved oxygen (DO), biochemical oxygen demand (BOD), and chemical oxygen demand (COD). 

The relationship between spectral data and SWQPs is established using stepwise regression, a 

statistical method that adds or removes predictor variables in an iterative manner based on their 

significance. At each step, the p-value of the independent variable is evaluated and only the value that 

is less than the specified threshold is retained in the model. This helps identify the most relevant 

spectral bands or indices that contribute significantly to the prediction of each water quality 

parameter, improving the accuracy and interpretation of the model. The SWQP’s are divided into 

optically sensitive (Tur, Chl) and non-sensitive (DO, BOD, COD) groups, followed by training (75%) 

and testing (25%) datasets. The derived models are verified through accuracy analysis using test data. 

2.3. Data Acquisition  

2.3.1. Landsat OLI Images 

The images of Landsat 8/9 OLI were accessed from the Earth Explorer platform 

(http://earthexplorer.usgs.gov) operated by the United States Geological Survey (USGS). The 

Landsat imagery for the Khadakwasala Reservoir was selected based on the specific path 147 and 

row 47 criteria. This led to a collection of 23 cloud-free Landsat OLI 8/9 images, which were used 

for the analysis. The downloaded images covered the period from 20th October 2022 to 22nd April 

2023. 
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Fig. 2. Methodology Workflow for estimation of water quality parameters from Landsat 8/9 OLI using SWR. 

 

2.3.2. Data Pre-processing 

The first step in the methodology is data acquisition, which includes two types of data: in-situ 

water quality parameters and satellite imagery. The in-situ water quality data was specifically 

collected on dates when corresponding Landsat 8/9 OLI images were available to maintain data 
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consistency. The next process is the image processing of raw images for further analysis. The Landsat 

images are processed to reduce the interference caused by the atmosphere and sensors, allowing for 

accurate interpretation and analysis of water quality parameters. The image processing involves 

radiometric corrections, geometrical corrections, atmospheric corrections, and Dark Object 

Subtraction. 

2.3.3. In-situ water quality parameter data 

Physical water samples from the Khadakwasala Reservoir were collected at coordinates 18.4390 

N and 73.7720 E. Sampling was conducted from October 20, 2022, to April 22, 2023, aligning with 

the satellite imagery acquisition period. These samples were analysed for various water quality 

parameters, including Chl, Turbidity, DO, BOD, and COD. Turbidity was measured on-site using a 

standard turbidity meter, while the other parameters were tested in the laboratory following the 

American Public Health Association (APHA) standards.  

To ensure consistency and minimize contamination from surface debris and atmospheric effects, 

all measurements were taken at a depth of 0.25 meters. The clean, sterile, and non-reactive 

polyethylene bottles were used for collecting water samples. After collection, the samples were placed 

in an ice container and transported to the laboratory within the holding time specified by APHA 

guidelines. 

2.3.4. Analytical Methods 

The analysis of the sampled water was carried out following the Standard Methods outlined by 

APHA. DO levels were quantified utilizing the Winkler titration method and measured in milligrams 

per liter (mg/L). BOD was determined using the 5-day BOD test, which measures the amount of 

oxygen consumed by microorganisms during the aerobic breakdown of organic material. These 

concentrations were reported as milligram per liter (mg/liter). The chemical oxygen demand (COD) 

was measured using the closed reflux titrimetry which is used to measure the oxygen equivalent that 

is needed to completely oxidize all the organic and inorganic matter that exists in the aqueous sample 

and the reflux reaction result is expressed in mg/L. The level of chlorophyll which is a measure of the 

phytoplankton biomass was determined using a pigment extraction technique. The obtained figures 

were recorded in micrograms per liter (µg/L). Turbidity used as a surrogate of suspended solids was 

estimated with the help of a nephelometric turbidity unit (NTU) meter. The device measures the light 

scattering of suspended particles hence recording an indirect measure of turbidity on the NTU. 

2.4. Stepwise Regression Technique 

Stepwise regression (SWR) is one of the statistical methods where the influential predictor 

variables in a set of candidates are given sequentially, to form a strong predictive model. The Akaike 

Information Criterion (AIC) is an indispensable factor in model selection which gives a balance 

between the accuracy of prediction and the complexity of the model, thus alleviating the problem of 

overfitting. SWR makes use of forward selection and backward elimination steps which is driven by 

AIC. In the case of optical sensitive parameters, Landsat spectral bands and spectral ratios are 

considered as the independent variables and turbidity and chlorophyll concentrations are the 

dependent variables. In contrast, the chlorophyll and turbidity are taken as independent variables in 

optically non-sensitive parameters, whereas, the dissolved oxygen, biochemical oxygen demand, and 

chemical oxygen demand are dependent variables. The procedure chooses the variable that produces 

least AIC which makes it the most applicable predictor and includes it in the model. k suing the 

models, k -fold cross- validation was used to test the validity and reliability of the models. The best 

SWR was chosen based on maximization of adjusted R2, minimum root-mean-square error (RMSE), 

mean absolute error (MAE) among another basis such as the AIC criterion. 

2.4.1. Relationship of Landsat with optically sensitive water quality parameter 

This research used SWR to find out the relations between surface reflectance measured using 

Landsat and in-situ of water quality factors, that is, turbidity (Tur) and chlorophyll-a concentration 

(Chl), in which the first five reflection bands and several band combinations as independent variables. 

The combinations used in the model were (Band 3 / Band 2), (Band 2 + Band 3), (Band 3 + Band 

4), and (Band 2 / Band 1). The model uses established research from the literature to select specific 
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bands and combinations for estimating water quality parameters like Tur and Chl, with in-situ 

measurements as dependent variables.  

The selection of band combinations in this study was not arbitrary but guided by established 

findings in remote sensing of inland waters. Band ratios such as B3/B2 (green/blue) and B2/B1 

(blue/coastal aerosol) are widely reported as effective indicators of turbidity and total suspended 

solids (TSS), since shorter wavelengths are strongly scattered by suspended particles, while green 

reflectance is more stable under varying concentrations.  Similarly, combinations involving B3 and 

B4 (green + red) are sensitive to chlorophyll-a because of the strong absorption of red light by 

chlorophyll pigments and the differential scattering in the green band. The additive indices (e.g., B2 

+ B3) exploit the complementary absorption and scattering properties of blue and green bands, which 

enhance sensitivity to phytoplankton biomass and light attenuation. Accordingly, the combinations 

tested in this study—(B3/B2), (B2 + B3), (B3 + B4), and (B2/B1)—were adopted from prior literature 

demonstrating their utility in estimating optically active parameters like chlorophyll-a and turbidity 

in reservoirs and lakes (Vakili & Amanollahi, 2020; Kirk, 2010; Chen et al., 2013; Sagan et al., 2020). 

These indices were therefore incorporated into the stepwise regression framework to ensure 

comparability with earlier studies and to leverage their proven biophysical sensitivity, rather than 

being developed empirically from scratch. This approach both strengthens model interpretability and 

ensures consistency with established remote sensing methodologies. 

2.4.2. Relationship of Landsat with optically non-sensitive water quality parameters 

The first step in our analysis is to establish a correlation between the optically sensitive 

parameters, derived from Landsat, and the optically non-sensitive parameters. We treat the optically 

sensitive parameters as independent variables and the non-sensitive parameters as dependent 

variables. Using the relationships from the previous step, we derive the optically sensitive parameters 

from Landsat data, allowing us to estimate the optically non-sensitive parameters despite their lack 

of direct correlation with Landsat reflectance. 

3. DATA RECORD 

This data record provides a distinctive evaluation of the surface water quality of the 

Khadakwasala reservoir by utilizing two separate datasets: physically sampled and measured surface 

water quality data, and water quality data obtained from Landsat 8 and 9 OLI. Landsat 8/9 OLI-

derived data is assessed by integrating physical measurements with top-of-atmospheric reflectance, 

enabling a thorough spatial analysis of water quality parameters. 

 

3.1. Data Record 

In-situ water quality data for the Khadakwasala Reservoir, including measurements of DO, BOD, 

COD, Chl, and Tur, were collected from October 2022 to April 2023 (Table 1). Chl serves as a vital 

indicator of phytoplankton density and productivity in aquatic ecosystems, reflecting oligotrophic to 

mesotrophic states. Reduced Chl concentrations signify limited algal blooms, thereby maintaining 

water quality and ecological equilibrium. Turbidity, a factor influencing light penetration and habitat 

quality, varies from 1.82 to 3.42 NTU, signifying clear water conditions. DO concentrations ranging 

from 7.48 to 7.84 mg/l signify optimal conditions for aquatic organisms. The BOD values fluctuate 

between 3.70 and 4.25 mg/l, signifying heightened organic pollution. The COD values span from 

14.99 to 24.25 mg/l, signifying the existence and concentration of various pollutants, including those 

resistant to microbial degradation. Consistent monitoring of BOD facilitates the comprehension of 

the impacts of activities on water quality and the identification of trends in organic matter 

accumulation. Elevated COD levels may signify sources of non-biodegradable pollutants. 

The temporal trends of the water quality data set show seasonal variation following precipitation, 

temperature fluctuation, and human activities. Higher levels of COD and BOD may occur during 

periods of increased runoff, while temperature stratification during different months or years can lead 

to varying DO levels. Throughout the period, the Khadakwasala Reservoir maintained quality levels 

that are safe enough to support life in the water bodies without showing any sign of intense pollution 

or eutrophication. 
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Table 1.  

In-situ SWQPs measured at Khadakwasala reservoir. 

    Date DO (mg/L) BOD (mg/L) COD (mg/L) Chl (ug/L) Tur (NTU) 

20-10-2022 7.68 3.97 16.61 0.15 2.03 

28-10-2022 7.76 3.93 24.25 0.14 1.87 

05-11-2022 7.84 4.04 17.99 0.18 1.82 

13-11-2022 7.70 3.84 18.91 0.14 2.06 

21-11-2022 7.67 3.92 20.88 0.15 2.10 

29-11-2022 7.65 3.83 21.09 0.15 2.07 

07-12-2022 7.73 3.93 17.15 0.16 1.91 

23-12-2022 7.70 3.79 21.30 0.15 2.09 

31-12-2022 7.67 3.97 20.16 0.15 2.04 

08-01-2023 7.67 4.25 23.43 0.15 1.86 

16-01-2023 7.59 3.83 19.86 0.15 2.06 

24-01-2023 7.76 3.97 18.10 0.15 1.99 

01-02-2023 7.68 3.87 16.60 0.17 2.07 

09-02-2023 7.61 3.80 17.59 0.15 2.15 

17-02-2023 7.48 3.80 15.11 0.15 2.21 

25-02-2023 7.51 3.73 14.99 0.16 2.19 

05-03-2023 7.57 3.90 17.70 0.19 1.95 

13-03-2023 7.61 3.70 16.20 0.21 2.12 

21-03-2023 7.50 3.70 15.90 0.22 3.42 

29-03-2023 7.59 4.00 19.00 0.17 2.06 

06-04-2023 7.48 3.90 17.40 0.21 2.32 

14-04-2023 7.58 3.80 17.70 0.20 2.08 

22-04-2023 7.75 4.00 16.20 0.22 1.85 

 

3.2. Landsat 8 OLI-derived Water Quality Data 

Landsat 8 OLI-derived data were utilized to assess SWQPs in the Khadakwasala Reservoir. A 

total of 24 samples were collected during the Landsat satellite pass from October 20, 2022, to April 

22, 2023, corresponding to the post-monsoon through pre-monsoon dry period in Pune. The sample 

from March 21, 2023, was excluded from the analysis due to cloud cover, which compromised the 

accuracy of the Landsat image for estimating surface water quality parameters. Thus, the analysis was 

performed on the 23 remaining samples. Consequently, the regression models are calibrated for dry-

season conditions and should be applied to monsoon periods only with caution, ideally following 

season-specific validation or recalibration.  

The differentiation between optically sensitive (Tur and Chl) and optically non-sensitive (DO, 

COD, and BOD) parameters underscores the distinct approaches required for their estimation from 

remote sensing data. The optically sensitive parameters were directly estimated from the spectral data 

due to their strong correlation with surface reflectance. In contrast, the optically non-sensitive 

parameters, although not directly retrievable, were modeled using indirect approaches that leverage 

the relationship with the optically sensitive parameters. 

3.2.1. Landsat-derived Turbidity 

The Tur concentration in the Khadakwasla Reservoir was estimated using a SWR analysis. The 

SWR analysis identified the band ratio of B2 (blue) to B1 (coastal aerosol) as the most significant 

variable for predicting turbidity concentration. The results of the multiple linear regression model 

using the selected variables are shown in Table 2. The resulting regression equation for Tur 

concentration is given by Eq. (1): 
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Turbidity = 1.01 × 
B2

B1
+ 1.02 --------  ------------------------------------------------------------      --   (1) 

This equation indicates that the ratio of reflectance between the B2 and B1 bands is a strong 

predictor of turbidity concentration, explaining 84.5% of the variance in the measured turbidity values 

(R2 = 0.85). The model’s statistical significance is reinforced by an F-statistic of 76.04 and a p-value 

below 0.05, signifying a highly significant correlation between the predictor variable and turbidity 

concentration. 

The regression coefficients, comprising the constant term (1.02) and the coefficient for the 

(B2/B1) band ratio (1.01), were determined to be statistically significant at the 0.05 level. The t-values 

(8.76 and 8.72) and their corresponding p-values (both below 0.05) confirm the strength of these 

coefficients. The 95% confidence intervals for the coefficients ([0.02, 0.98] for both) further 

substantiate their reliability and the robustness of the predictive relationship.  

The results validate that the (B2/B1) band ratio is a robust and statistically significant predictor 

of turbidity concentration (see Fig. 3a) in the Khadakwasala Reservoir, illustrating the efficacy of 

remote sensing methodologies for water quality evaluation. 

3.2.2. Landsat-derived Chlorophyll 

The Chl data for the Khadakwasala Reservoir, derived from Landsat 8 OLI, were acquired via a 

SWR analysis. This analy sis identified six principal spectral variables as significant predictors of Chl 

concentration: B3/B2, B4, B3+B4, B2, B5, and B2+B3. The results of the multiple linear regression 

model using the selected variables are shown in Table 2. The regression model is represented by the 

subsequent (Eq. 2): 

 

Chlorophyll = -0.16 × ( 
B3

B2
 ) - 0.96 × B4 + 1.54 × (B3 + B4) - 2.12 × B2 - 0.49 × B5 + 0.37 × B2 + 0.31                                                                                                          

-                                                                                                         ---------------------------------          (2) 

Fig. 3. Sample images of the Spatial variability of water quality parameters concentration across 

Khadakwasala reservoir sampled on 28-10-2022: (a) Turbidity (NTU); (b) Chlorophyll a, (µg/L); (c) DO 

(mg/L); (d) BOD (mg/L); (e) COD (mg/L). 
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This model achieved a R2 value of 0.90, indicating that 89.6% of the variability in chlorophyll 

concentration can be explained by the selected spectral predictors. The adjusted R2 of 0.85 

demonstrates the model’s robustness, accounting for the number of predictors while maintaining a 

high level of explanatory power. The F-statistic of 17.31 and the associated p-value less than 0.05 

confirm the statistical significance of the model, underscoring the effectiveness of the selected 

spectral bands and ratios in predicting chlorophyll concentration. 

The strong predictive capability of the SWR model, as evidenced by the high R2 value, 

emphasizes the utility of Landsat 8 OLI spectral data in assessing Chl concentrations in surface water 

at Khadakwasala Reservoir. The identified relationships align with known optical properties of Chl 

and suspended matter, where the B2 and B3 bands are sensitive to Chl due to their response to specific 

light absorption and scattering characteristics. The Landsat 8 OLI-derived Chl data contribute 

valuable insights into the spatial and temporal distribution of chlorophyll concentration in the 

Khadakwasala Reservoir (refer to Fig. 3b), offering a reliable tool for water quality monitoring and 

management. 

3.2.3. Landsat-derived DO 

The SWR analysis used to estimate DO concentration identified turbidity as the sole predictor. 

The results of the multiple linear regression model using the selected variables are shown in Table 2. 

The linear regression model developed is described by the following equation (Eq.3): 

 

DO = -0.63 × Tur + 8.96   -----         ---------------------------------------------------------------------- (3) 

The R2 value of this model was 0.65 which shows that 64.9percent of the variance of dissolved 

oxygen concentration can be explained by the level of turbidity. The adjusted R 2 of 0.62, has 

validated the fact that the model still has a fairly adequate explanatory power whilst still taking into 

consideration the number of the predictors used. Statistical significance of the model is further 

confirmed by this F statistic that equals 25.89 and p value below, 0.005 and shows that turbidity is 

the significant predictor of dissolved oxygen concentration (refer Fig. 3c). The coefficient for Tur in 

the regression model is -0.63, with a p-value less than 0.001, demonstrating that Tur has a statistically 

significant negative effect on DO concentration. This negative relationship implies that as Tur 

increases, the DO concentration decreases. This is an ecologically sound trend in the sense that 

increased turbidity reduces light penetration into the water column thus repressing the photosynthetic 

mechanism of aquatic plants and algae of the water column, which eventually leads to low oxygen 

generation. 

 

3.2.4. Landsat-derived BOD 

The stepwise regression analysis for estimating BOD concentration identified turbidity as the 

only significant predictor. The results of the multiple linear regression model using the selected 

variables are shown in Table 2. The linear regression model is described by the following equation 

(Eq.4): 

 

BOD = -0.87 × Tur + 5.67  --      -------------------------------------------------------------------------- (4) 

This model attained a R2 value of 0.64, signifying that 64.4% of the variability in BOD 

concentration is explicable by turbidity levels. The adjusted R2 value of 0.62 indicates that the model 

possesses a substantial degree of explanatory power, considering the number of predictors employed. 

The F-statistic of 25.30 and the corresponding p-value below 0.05 establish the statistical significance 

of the model, signifying that turbidity is a significant predictor of BOD concentration. The coefficient 

for turbidity in the regression model is -0.869, with a p-value less than 0.001, demonstrating that 

turbidity has a statistically significant negative effect on BOD concentration. This negative 

relationship implies that as turbidity increases, BOD concentration decreases. This inverse 

relationship may be explained by the fact that higher turbidity levels can lead to reduced light 
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penetration in the water column, which may limit primary productivity and reduce the availability of 

organic matter for microbial decomposition, ultimately resulting in lower BOD concentrations (refer 

Fig. 3d). 

The significant relationship between Tur and BOD concentration underscores the utility of 

remote sensing data, particularly Landsat 8 OLI-derived Tur, in estimating BOD in surface waters. 

While Tur alone was identified as a significant predictor, the complexity of BOD dynamics suggests 

that additional optically sensitive parameters or more advanced modelling approaches could further 

enhance the predictive accuracy of the model. 

3.2.5. Landsat-derived COD 

The stepwise regression analysis identified Tur and Chl as significant predictors of COD 

concentration. The results of the multiple linear regression model using the selected variables are 

shown in Table 2. The resulting linear regression model is described by the following equation (Eq.5): 

 

COD = -233.18 × Chl - 17.16 × Tur + 89.44  ----------------------------------------------------(((((((((5) 

This model achieved R2 value of 0.84, indicating that 83.5% of the variability in COD 

concentration can be explained by turbidity and chlorophyll levels. The adjusted R2 value of 0.81 

confirms that the model retains a high level of explanatory power while accounting for the number of 

predictors used. The F-statistic of 32.79 and the associated p-value less than 0.05 validate the 

statistical significance of the model, highlighting that Tur and Chl are meaningful predictors of COD 

concentration (refer Fig. 3e). 

The regression coefficients for Chl (-233.18) and Tur (-17.16) are both negative, with p-values 

less than 0.001, indicating their statistically significant contributions to the model. The negative 

coefficients suggest that as chlorophyll and turbidity increase, COD concentration decreases. This 

inverse relationship can be attributed to the fact that higher Chl concentrations are indicative of 

increased photosynthetic activity, which can enhance oxygen production and thus reduce COD levels. 

Additionally, higher Tur levels may correspond with an abundance of suspended particles that limit 

light penetration, potentially decreasing the availability of organic matter and, consequently, COD 

concentrations. Identifying TUR and CHL as significant predictors emphasizes the utility of Landsat-

derived data for assessing COD concentrations in surface waters. This approach allows for indirect 

estimation of COD, which is challenging to measure directly through remote sensing due to its optical 

insensitivity. 

 
Table 2.  

Ordinary Least Squares result obtained by SWR analysis between Landsat spectral reflectance 

bands and SWQPs at Khadakwasala. 

SWQPs Selected Features R2 Adj. R2 F-Statistics p-value 

Turbidity 'B2 / B1' 0.85 0.83 76.04 < 0.05 

Chlorophyll 'B3/B2', 'B4', 'B3+B4', 'B2', 'B5', 

'B2+B3' 

0.90 0.85 17.31 < 0.05 

DO 'Turbidity' 0.65 0.62 24.89 < 0.05 

BOD 'Turbidity' 0.65 0.62 25.30 < 0.05 

COD 'Chlorophyll', 'Turbidity' 0.84 0.81 23.45 < 0.05 

4. TECHNICAL VALIDATION 

The Water quality parameters of Khadakwasla reservoir were estimated using Landsat-based 

SWR models and validated using a training dataset of 17 records and a testing dataset of six records. 

The models were assessed for predictive efficacy using metrics like R2, RMSE, and p-values to 

determine the correlation between predictor variables and water quality parameters. 
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4.1. Model Validation Results 

Model of Turbidity. The Turbidity model had an R2 of 0.62, which means that almost 62% of 

the observed turbidity data variability is captured by the model. An RMSE of 0.07 indicates the 

average deviation between predicted and observed turbidity values, indicating moderate levels of 

predictive precision (ref. Fig. 4a). 

Model of Chlorophyll. The Chl model had an R² equal to 0.65, indicating that approximately 

64.84% of the chlorophyll variability was explained by the model. The RMSE of 0.0095 indicates the 

average difference between actual chlorophyll values and their respective predicted values.There is a 

strong p-value for the model’s significance of 0.001 or less, (ref. Fig. 4b). 

 
Fig. 4.  Test-set validation of stepwise-regression models for Landsat 8/9 OLI water-quality retrievals  sampled 

on 28-10-2022 (Observed vs Modelled), Khadakwasala Reservoir: Turbidity, Chlorophyll a, Dissolved 

Oxygen, Biochemical Oxygen Demand and Chemical Oxygen Deman. 

Model of Dissolved Oxygen. The Dissolved Oxygen (DO) model attained a R2 score of 0.60 for 

the observed DO data, where about 59.46% variance could be explained. Low RMSE values (0.043) 

signify that predictive accuracy is not very high in the case of DO concentration. The statistical 

validity of this model has been attested by the p-value being less than 0.001 (ref. Fig. 4c). 

Model of Biological Oxygen Demand. The Biological Oxygen Demand (BOD) model displayed 

an R2 value equal to 0.60, implying that it covers approximately 60.18% of all BOD data variances. 

RMSE was estimated at 0.06, thus showing an average difference between the projected and actual 

BOD values. A P-value less than 0.001 confirms the significance of the relation between turbidity 

and BOD (ref. Fig. 4d). 

Model of Chemical Oxygen Demand. In the COD model, an R2 of 0.78 was obtained, indicating 

that the model could justify almost 77.47% of COD variability. A RMSE of 1.34 is used as an average 
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comprehension between the estimated and actual values of COD. A P-value below 0.001 for this 

model also adds strength to its predictivity (ref. Fig. 4e). 

The models exhibited statistically significant correlations (p-value < 0.001) between the 

predictor variables and the corresponding water quality parameters; however, the R2 values suggest a 

moderate degree of predictive accuracy. The validation outcomes of the Landsat-derived SWR 

models for Khadakwasala Reservoir demonstrate a moderate degree of precision in assessing water 

quality parameters. The moderate R² for DO and BOD (≈0.60–0.65) reflects on certain limitations 

induced in predicting non-optical water quality parameters from optically sensitive parameters. In this 

study, turbidity was the only retained predictor for both DO and BOD, while other external parameters 

(e.g., temperature, microbial activity, etc.) are not considered in the model which could be one reason 

for moderate accuracy.  

The limited dataset comprising 23 samples (17 for training and 6 for testing), all collected from 

a single surface location (0.25 m), restricts the ability to map both horizontal and vertical 

concentration variations Although field work was aligned with satellite passes, short-term variability 

and residual correction uncertainties (radiometric/atmospheric) introduce additional noise in 

reflectance–chemistry relationships. These factors together account for the observed R² while the fits 

remain statistically robust; denser, multi-site/depth sampling and added covariates are expected to 

narrow uncertainties in future work. 

 Improving model performance can be achieved by rectifying the constraints of the training 

dataset, integrating supplementary data points, and investigating alternative modeling methodologies. 

Such enhancements will ultimately support more accurate and reliable estimation of surface water 

quality parameters using remote sensing data, contributing to better water resource management and 

environmental monitoring efforts.  

The influence of seasonal variability, especially significant events like monsoons, on water 

quality parameters and subsequently on model performance, is a critical consideration. Seasonal 

changes, particularly monsoon events, can drastically alter the physical, chemical, and biological 

characteristics of a water body. Increased rainfall during monsoons typically leads to higher runoff 

from the surrounding catchment area, introducing larger quantities of suspended sediments, organic 

matter, and nutrients into the reservoir. This influx can lead to significant increases in turbidity, total 

suspended solids, and potentially influence chlorophyll concentrations due to nutrient enrichment. 

The models developed in this study were calibrated on data from a specific period specially during 

non-monsoon period, and their performance may vary when applied to different seasons with distinct 

environmental conditions. Models developed using limited, localized datasets tend to lack 

generalizability across different seasons.  

 

 

5. CONCLUSIONS 

 

This study successfully integrates In situ water quality measurements have been integrated with 

Landsat 8/9 Operational Land Imager (OLI) data for assessing water quality in the Khadakwasala 

Reservoir, Pune, India. Using stepwise regression analysis, predictive models have been developed 

that relate Landsat-derived spectral indices to key parameters, including turbidity, chlorophyll-a, 

dissolved oxygen (DO), biochemical oxygen demand (BOD), and chemical oxygen demand (COD). 

The models demonstrated predictive accuracies with R2 values of 0.85 for turbidity, 0.90 for 

chlorophyll-a, 0.65 for DO, 0.64 for BOD, and 0.84 for COD, confirming the feasibility of using 

remote sensing for water quality assessment. 

These results highlight the utility of satellite imagery, particularly Landsat 8/9 data, for 

monitoring water quality over large geographic areas, providing an efficient and cost-effective 

alternative to traditional in situ monitoring methods. This study do not observe the major fluctuation 

in the water quality in both dataset in-situ and by Landsat. This means the 8 days revisit temporal 

resolution monitoring frequency of alternate Landsat 8 and 9 does not affect lake and reservoir 

monitoring. However, it may make the issue of concern in case of rivers. Furthermore, turbidity was 

found to be a significant predictor for several non-optically sensitive parameters (DO, BOD, COD), 
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enhancing the robustness of the models. This study provides a scalable method for routine water 

quality monitoring that can be applied to other water bodies with similar environmental conditions. 

The Integrating remote sensing data with physical water quality measurements presents a 

comprehensive approach to effective water resources management. This approach not only aids in the 

monitoring and management of water bodies like the Khadakwasala Reservoir but also holds promise 

for broader applications in environmental monitoring, supporting the sustainable management of 

water resources across regions. Future research could focus on increasing the accuracy of the models 

by incorporating additional data sources or exploring advanced machine learning techniques to 

improve the predictive ability for water quality parameters. Also, we recommend to consider other 

water quality parameters like temperature, CDOM, Secchi Depth etc. for betterment and improvement 

of the model.  

 

 

ANNEX CONTAINING DATA AVAILABILITY 

 

A1) In-situ Water Quality Data 

The surface water quality parameters data, including Tur, Chl, DO, BOD, and COD for the 

Khadakwasala Reservoir in Pune, is available for public access. This dataset can be freely 

downloaded and used from the Zenodo Open Access Repository at 

https://zenodo.org/records/10901935  , (Kulkarni & Khare, 2024a ; Kulkarni & Khare, 2024b). The 

data is hosted at Zenodo and is licensed for open access, ensuring its availability for researchers and 

practitioners interested in water quality assessment and related studies. 

A2) Landsat 8/9 OLI Derived Water Quality Data 

The publicly available dataset “Water Quality Parameters for Khadakwasala Dam derived 

using Landsat 8 OLI Surface Reflectance” (Mendeley Data, v1; DOI: 10.17632/nwp835npgk.1) 

provides GeoTIFF raster layers for chlorophyll-a, turbidity, COD, BOD, and DO derived from 

Landsat-8 OLI surface-reflectance bands and band ratios for 20 Oct 2022–22 Apr 2023 (post-

monsoon to pre-monsoon period). The accompanying description details the regression equations 

used to produce the layers (OACs from reflectance; NOACs from turbidity/chlorophyll), the file 

naming convention (Parameter_YYYYMMDD_Khadakwasala.tiff), and a caution that the 

relationships are site-specific. The dataset is released under CC BY 4.0, enabling reuse with 

attribution. All image data generated in this study are stored in the Mendeley Data repository and 

can be accessed via the following DOI: https://data.mendeley.com/datasets/nwp835npgk/1. This 

dataset is publicly available without any access restrictions, for distribution and reproduction in any 

medium, provided the original work is properly cited. 

A3) Code availability 

The Python code used for the generation and processing of datasets in this study is available at 

https://github.com/rpkulkarni/stepwise-regression-SWQP-khadakwasala.git. This repository 

contains the exact version of the code used in the study, along with the relevant documentation. The 

primary dependencies for this code include Python 3.8, along with libraries such as NumPy (v1.21.0), 

Pandas (v1.3.0), and Scikit-learn (v0.24.2). The specific variables and parameters used for dataset 

generation and processing are documented within the repository’s README file. Access to the code 

is unrestricted and available for public use.  
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