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ABSTRACT  

Accurate inflow prediction models are essential decision-support tools for effective reservoir 

management and optimal water resource utilization. Among semi-distributed hydrological models, the 

hillslope-based approach has traditionally offered the finest spatial resolution. However, this study 

explores the integration of a higher-resolution spatial discretization method—slope segments—originally 

introduced by Tantasirin et al. (2016) for soil erosion modeling, into inflow prediction modeling for 

reservoir systems in the Lam Phra Phloeng watershed, Thailand. The Lam Phra Phloeng watershed was 

subdivided into 4,839 hillslope units and 54,378 slope segments. Compared to hillslopes, slope segments 

provided more homogeneous spatial units, reducing internal variability in land use and soil properties. 

This refinement allowed for more representative Curve Number (CN) values, enhancing the accuracy of 

runoff estimation using the SCS-CN method. Model performance was evaluated using three metrics—

Percentage Error in Peak Flow (PEPF), Root Mean Square Error (RMSE), and Nash–Sutcliffe Efficiency 

(NSE)—during the validation years 2015, 2019, and 2020. The slope segment-based model consistently 

outperformed the hillslope-based model. For example, PEPF values were significantly lower (0.18%, 

0.18%, and 2.02% vs. 1.25%, 1.47%, and 7.01%), RMSE values were reduced (0.61, 1.23, and 4.32 

MCM vs. 0.66, 1.50, and 4.48 MCM), and NSE values were higher (0.94, 0.36, and 0.44 vs. 0.90, 0.30, 

and 0.40). These results demonstrate that slope segment-based spatial subdivision enhances the predictive 

performance of inflow models and offers a promising approach for improving hydrological modeling in 

reservoir systems. Future applications in diverse watersheds could further validate its utility for water 

resource planning and management. 
 

Key-words: SCS-CN model; Spatial discretization; Slope segment delineation; Reservoir inflow 

prediction 

1. INTRODUCTION 

Reservoirs are typically formed by constructing dams across streams, with their primary function 

being the regulation of natural streamflow. This regulation is achieved by storing excess water during 

wet seasons and releasing it during dry periods to mitigate low river flows. Accurate inflow 

forecasting is particularly critical during the rainy season, as it directly informs reservoir drainage 

planning and operational decision-making. A wide range of inflow prediction models are employed 

as decision-support tools in reservoir management. These models are generally classified based on 

their spatial representation into three categories: lumped, semi-distributed, and distributed models.  

Semi-distributed hydrological models rely on spatial discretization schemes to represent 

heterogeneity in land use, soils, and topography. Different schemes have been proposed, including 

sub-catchments, hydrological response units (HRUs), representative elementary areas (REA), 

geomorphological units, and hillslopes. Each has advantages and weaknesses: sub-catchments reduce 

computational time but may obscure variability; HRUs capture heterogeneity but are often not 

spatially explicit; REAs aim for optimal process homogeneity at a given scale; while hillslopes 

provide finer spatial representation but can still encompass diverse soils and land uses.  
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The scale of these units directly influences runoff timing, volume predictions, and water balance 

estimates (Beven, 1993; Reggani et al., 1998; Vannametee et al., 2012, 2013). 

While finer units can preserve spatial heterogeneity, they also increase the number of modeling 

elements, raising challenges of parameterization and computation. Semi-distributed models therefore 

aim to identify an optimal spatial scale that balances realism with efficiency. Hillslopes are widely 

used but may remain too coarse for representing local hydrological processes. In response, Tantasirin 

et al. (2016) introduced slope segments, which subdivide hillslopes into smaller, hydrologically 

connected planes delineated by stream links and contour lines. These units are more homogeneous in 

soil and land use properties, and are directly connected to local drainage networks. 

Based on this background, we hypothesize that slope segment discretization will improve inflow 

prediction compared to traditional hillslope units. Specifically, slope segments reduce aggregation 

errors in land use–soil combinations, yield more representative Curve Number (CN) values, and better 

capture flow connectivity along hillslopes. At the same time, the scale remains compatible with semi-

distributed modeling frameworks, avoiding the parameter burden of fully distributed models. This 

study evaluates the performance of slope segments against hillslopes to test this hypothesis. 

In Thailand, the most commonly used lumped model is the Artificial Neural Network (ANN) 

model (Suiadee &Tingsanchali,2007; Chiamsathit,2016; Ngamsanroaj et al.,2019; Amnatsan,2021). 

Distributed models such as the HO8 (Kompor,2021) and wflow_sbm (Wannasin et al.,2021) have 

also been applied, while the Soil and Water Assessment Tool (SWAT) (Phomcha et al.,2021) serves 

as a representative semi-distributed model. 

Lumped models treat each sub-basin as a single, homogeneous unit. While this approach 

simplifies computation and enables faster forecasts, it also generalizes spatial variability—such as 

rainfall-runoff dynamics—across the entire sub-basin. This can lead to parameter inaccuracies and 

reduced predictive performance. In contrast, distributed models incorporate detailed spatial data, 

including soil properties, vegetation, and land use, and divide the basin into fine-resolution grids. 

These models simulate water flow across cells, enabling runoff estimation at ungauged locations and 

assessments of water quality and land-use impacts (Smith et al.,2004) However, their high 

computational demands and long processing times can be limiting factors (Ejaz et al.,2022). 

Semi-distributed models offer a compromise between these two approaches. They provide a more 

realistic representation of spatial heterogeneity than lumped models while requiring less 

computational power than fully distributed models (Tantasirin et al.,2016). These models typically 

use spatial units such as hydrological response units (HRUs), irregular grids, or hillslopes. Among 

these, hillslope-based models represent the finest level of spatial subdivision currently used in many 

semi-distributed frameworks (Flugel,1995). Hillslopes are key hydrological units that channel water 

to river networks via surface and subsurface pathways (Lapides et al.,2022), and are often divided 

into three zones: left, right, and top slopes (Fan et al.,2019). 

Despite their finer resolution, hillslopes can still encompass large and heterogeneous areas. The 

size of these computational units significantly influences hydrological responses (Zehe et al.,2014). 

Larger units may obscure spatial variability, leading to less accurate parameterization and reduced 

model fidelity (Hutchinson, 1988; Kienzle, 2003; Jha, 2004; Rouhani, 2009). To address this, 

Tantasirin et al. (2016) introduced a method for subdividing hillslopes into smaller, more 

homogeneous units called slope segments, initially for soil erosion modeling. However, this finer-

scale spatial discretization has not yet been adopted in semi-distributed inflow prediction models. 

This study aims to incorporate slope segment-based spatial subdivision into inflow prediction 

modeling for reservoirs and to evaluate its performance relative to traditional hillslope-based models. 

By comparing the predictive accuracy of these two approaches, the study seeks to determine whether 

slope segment discretization can enhance model performance. Improved inflow forecasting has the 

potential to significantly strengthen reservoir water resource management, particularly in the face of 

increasing challenges posed by land-use changes and climate variability. Ultimately, more accurate 

modeling will support more efficient and equitable water allocation across the watershed.    
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2. MATERIALS AND METHODS  

2.1. Automated drainage network extraction 

The automated drainage network extraction method proposed by Tantasirin et al. (2016) was 

adopted, integrating spatial hydrological analysis with Digital Elevation Model (DEM) processing. A 

10-m resolution DEM was generated using the ANUDEM algorithm (Hutchinson, 1988; Hutchinson, 

1989), followed by hydrological preprocessing to correct topographic depressions (“sinks”) using the 

efficient sink-filling method of Wang & Liu (2006). Flow direction and accumulation were computed 

using the Rho8 algorithm (Fairfield & Leymarie, 1991), and the Lam Phra Phloeng Dam outlet was 

designated as the watershed outlet. The Drainage Area Threshold (DAT), which determines stream 

initiation points, was defined to balance hydrological detail with computational efficiency. 

Hydrological and spatial datasets used in this study were compiled from official government 

agencies (Table 1). Rainfall data were obtained from the Thai Meteorological Department (TMD) 

and the Royal Irrigation Department (RID), while streamflow and reservoir inflow records were 

provided by RID. Contour maps were sourced from the Royal Thai Survey Department (RTSD) and 

subsequently converted into a DEM, while land use/cover and soil datasets were supplied by the Land 

Development Department (LDD). These datasets form the basis for model input, calibration, and 

validation. 

Table 1.  

Summary of datasets used in this study. 

Dataset Variable(s) Source  Units Resolution Period  

Rainfall gauges Daily (mm) TMD & RID Station points Daily 2010–2023 

Streamflow Q (m³/s) RID Station points Daily 2010–2023 

Inflow MCM RID Station points Daily 2010–2023 

Contour Elevation (m) RTSD Shapefile - 2023 

DEM Elevation (m) Generated from 

contour data 

Raster 10*10 m 2023 

Land use/cover LULC classes LDD Shapefile - 2011,2015,2019 

Soil HSG / texture LDD Shapefile - 2023 

 

2.2. Determination of the Optimal Drainage Area Threshold (DAT) 

To identify the optimal DAT, the Number of Error Stream Cells (NESC) method was applied by 

Tantasirin et al. (2016). Stream networks were extracted using DAT values ranging from 10,000 to 

500,000 m². The optimal threshold was determined using the Power Rule derivative, identifying the 

point where error reduction plateaued. The selected DAT of 450,000 m² (4,453 cells) minimized 

spatial errors and was used for subsequent watershed segmentation. 

2.3. Slope Segment-Based Spatial Delineation  

Following stream extraction, the watershed was subdivided into hydrological units using a 

hillslope-based approach (Lapides et al., 2022) dividing each sub-watershed into left, right, and upper 

hillslopes. These hillslopes were further refined into slope segments using Tantasirin’s method.  

Stream links were extended and segmented at 100-meter intervals, with adjacent land areas 

defined as slope planes. These were then subdivided along contour lines to form slope segments—

smaller, more homogeneous units that enhance spatial resolution. The delineation was implemented 

using a custom-developed script (Fig. 1). To achieve finer spatial resolution, each hillslope unit was 

further subdivided using the slope segment method introduced by Tantasirin. This method begins by 

extending the stream links within each hillslope unit. These extended stream links are then segmented 

at 100-meter intervals, producing a series of stream segments. The land area adjacent to each stream 

segment is defined as a slope plane. Each slope plane is subsequently subdivided based on contour 

lines derived from elevation data, resulting in smaller and more homogeneous spatial units known as 

slope segments (Fig. 2). This hierarchical delineation process enhances the spatial granularity of the 

model, allowing for more accurate representation of hydrological processes. The final delineation of 

slope segments was implemented using a custom-developed script.  
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Fig. 1. Sub-watershed delineation and corresponding hillslope units within the Lam Phra Phloeng watershed, 

illustrating the spatial hierarchy used in the semi-distributed hydrological model. 

 

Fig. 2. Procedure for refining hillslope boundaries to smaller, more hydrologically representative units, adapted 

from Tantasirin, aimed at improving spatial resolution and runoff response accuracy in watershed modeling. 

2.4. Reservoir Inflow Modeling 

2.4.1. SCS–Curve Number Implementation and Inflow Modeling 

The SCS–Curve Number (SCS–CN) method was applied to estimate surface runoff into the Lam 

Phra Phloeng Reservoir, Thailand. This empirical method is widely used in data-scarce regions due 

to its simplicity and minimal input requirements (Soil Conservation Service, 1986). It has also been 

successfully applied in hillslope runoff estimation and spatial runoff modeling in Europe (Crăciun et 

al., 2007; Crăciun et al., 2009; Haidu & Ivan, 2016; Haidu et al., 2017) and Asia (Tripathi et al., 2006; 

Lian et al., 2020; Ngamsanroaj & Tamee, 2019). 



 Thattanaporn KHOMSRI, Chatchai TANTASIRIN and Venus TUANKRUA / A COMPARATIVE STUDY … 20 

 

2.4.2. CN Assignment and Antecedent Moisture Adjustment 

Curve Number (CN) values were assigned to each spatial unit based on hydrologic soil group 

(HSG), land use (LU), and antecedent moisture condition (AMC). AMC adjustment followed USDA 

(2004) guidelines, using 5-day cumulative rainfall thresholds: CN I: < 35 mm and CN III: > 75 mm 

This dynamic adjustment allows the model to account for soil wetness between storm events, 

improving runoff estimation accuracy (Crăciun et al., 2007). The distribution of HSG–LU 

combinations across hillslope and slope segment units is summarized in Table 3 and Fig. 6, showing 

that slope segments preserve greater spatial heterogeneity than hillslopes. 

2.4.3. Runoff Calculation 

Daily runoff depth for each unit was computed using a custom Python script, implementing the 

standard SCS–CN equation: 

 

                           𝑄 =
(𝑃−0.2𝑆)2

𝑃+0.8𝑆
3𝑓0𝑟𝑃 > 0.2𝑆                                                                           (1) 

 

                          𝑆 =
254000

𝐶𝑁
− 245                                                                                            (2) 

 

where: Q = direct runoff (mm); P = total rainfall (mm); S = potential maximum retention after 

runoff begins (mm); CN = curve number adjusted for AMC. 

2.4.4. Routing to the Reservoir 

Runoff depth (mm) was converted to volume by multiplying by the unit area (m²). Volumes from 

all units were routed downstream via the D8 flow direction network derived from the DEM. Daily 

inflow to the reservoir pour point was obtained by summing contributions from all upstream units. 

Channel hydraulics were not explicitly simulated, consistent with a semi-distributed modeling 

approach. 

2.4.5. Performance Metrics 

Model performance was evaluated using three metrics: 

 

                            𝑅𝑀𝑆𝐸 = √ ( 
1

𝑛
∑ (𝑄𝑡

𝑠𝑖𝑚𝑛
𝑡=1 − 𝑄𝑡

𝑜𝑏𝑠)
2

                                                          (3) 

 

                           𝑁𝑆𝐸 =  1 −
∑ (𝑄𝑡

𝑠𝑖𝑚𝑛
𝑡=1 − 𝑄𝑡

𝑜𝑏𝑠 )2 

∑ (𝑄𝑡
𝑜𝑏𝑠𝑛

𝑡=1 − 𝑄𝑡
−𝑜𝑏𝑠 )2 

                                                                    (4) 

 

                          𝑃𝐸𝑃𝐹 =  100 ∗
( 𝑄𝑝𝑒𝑎𝑘

{𝑠𝑖𝑚}
− 𝑄𝑝𝑒𝑎𝑘

{𝑜𝑏𝑠}
)

𝑄𝑝𝑒𝑎𝑘
{𝑜𝑏𝑠}                                                                       (5) 

 

where: 𝑄Sim and 𝑄Obs are simulated and observed reservoir inflows at time t; 𝑄Obs is the mean 

observed inflow. 

These metrics allow evaluation of both overall hydrograph similarity (RMSE, NSE) and peak flow 

prediction accuracy (PEPF) (Fig. 9). 

2.5. Rainfall-Runoff Data Preparation 

Hydrological data from 2012–2023 were used, including daily runoff from Stations M.145 and 

M.171, and inflow data for the Lam Phra Phloeng Reservoir, all sourced from the Royal Irrigation 

Department (RID). Rainfall data from 10-gauge stations were evaluated for consistency using the 

Double Mass Curve (DMC) method (Searcy & Hardison,1960), with R² used to assess reliability. To 

account for climate variability, years were categorized by ENSO phase: La Niña: 2013, 2020; Neutral: 

2012, 2015, 2018, 2021–2023; El Niño: 2014, 2016, 2017, 2019 Average rainfall was estimated using 

the Thiessen Polygon method (Arianti et al.,2018) (Fig. 3). 
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(a)                                                                                            (b)      

Fig. 3. Study area and DEM (a); Rainfall and Runoff station in The Lam Phra Phloeng watershed (b). 

2.6. Determination of Curve Number (CN)  

CN values were derived from HSG and land use data provided by the Land Development 

Department of Thailand. HSGs were classified following Thephasit and Kriangsiri (Thephasit & 

Kriengsiri, 2001) into: Group A (high infiltration capacity): Soil Groups 29, 31, 38, 44, 47, 56 Group 

B (moderately high infiltration capacity): Soil Groups 33, 48, 55, 62 and Group D (low infiltration 

capacity): Water bodies. These classifications are illustrated in Fig. 4.  

 
(a)                                                                                                     (b) 

Fig. 4. Classification derived from 15 soil groups in the Lam Phra Phloeng watershed (a); categorized into 

Groups A, B, and D based on infiltration capacity (b). 

Land use was reclassified into nine categories (e.g., evergreen forest (For_evg), deciduous 

forest (For_dec), forest plantation (For_plant), rehabilitation forest (For_rehab): includes degraded 

forests, grasslands, shrublands, and wetlands , paddy fields (A_pad), field crops (A_crp), perennial 

plantations (A_tree), urban areas (Urb) and water bodies (Wat) and matched to rainfall-runoff years 

(e.g., 2011 land use for 2012–2013). To ensure temporal consistency with rainfall-runoff datasets, 

land use data (Fig. 5) were matched to the corresponding years: 2011 land use for 2012–2013 (La 

Niña and Neutral years); 2015 land use for 2014–2015 (El Niño and La Niña years); 2019 land use 

for 2018–2019 (Neutral and El Niño years). Spatial layers (hillslopes/slope segments, rainfall, HSG, 

land use) were integrated using raster union and zonal statistics to assign dominant attributes. CN 

values were then assigned using USDA (2004) (Table 2 and Fig. 6). 
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(a)                                                      (b)                                                                  (c) 

Fig. 5. Reclassified land use categories in the Lam Phra Phloeng watershed, grouped into nine hydrologically 

relevant classes for Curve Number assignment: 2011 (a); 2015 (b); 2019 (c). 

Table 2.  

Initial CN values. 

Land Use HSG 

A B D 

For_evg 33.08 57.75 60.00 

For_dec 36.75 63.00 76.65 

For_plant 42.00 69.30 78.75 

For_rehab 47.25 73.50 80.85 

A_pad 63.00 84.00 87.15 

A_crp 74.09 85.00 89.00 

A_tree 52.50 78.75 84.00 

Urb 89.25 89.25 89.25 

Wat 100.00 100.00 100.00 

 

(a)                                                      (b)                                                                  (c) 

Fig. 6. Initial Curve Number (CN) values assigned to each spatial unit based on the intersection of land use and 

Hydrologic Soil Group (HSG) data, following USDA standard guidelines: 2011 (a), 2015 (b), 2019 (c).  

2.7. Model calibration and validation 

Given the sensitivity of the SCS-CN method to land use and Hydrologic Soil Group (HSG), a 

detailed analysis of Curve Number (CN) distribution was conducted for the calibration and validation 

years. Across the 2011, 2015, and 2019 land use datasets, the dominant types were field crops (A_crp), 

evergreen forest (For_evg), and rehabilitation forest (For_rehab), with A_crp showing a notable 

increase over time. The most extensive CN–HSG combinations were: AA_crp: 43.33% (hillslopes), 

36.83% (slope segments) and BFor_evg, BA_crp, and AFor_evg followed in area coverage. 
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Sensitivity analysis revealed that AA_crp had the greatest influence on runoff predictions, 

significantly affecting PEPF, NSE, and RMSE. Calibration used data from 2012–2014 (La Niña, 

Neutral, El Niño), while validation applied 2015, 2019, and 2020 datasets. CN values for AA_crp 

were fine-tuned using a trial-and-error approach in the developed scripts. Model performance was 

assessed using: PEPF: Peak flow error (%), with values near zero indicating accuracy (Zhang et al., 

2013; Kocyigit et al., 2017; Wang et al., 2025); RMSE: Measures average prediction error; values 

<50% of the observed standard deviation are acceptable (Sing et al., 2004); NSE: Indicates model 

efficiency (Nash & Sutcliffe, 1970; Waseem al., 2017). 

 

3. RESULTS AND DISCUSSION  

3.1. Watershed Subdivision into Hillslopes and Slope Segments 

3.1.1. Number of Spatial Units 

The Lam Phra Phloeng watershed was initially subdivided into 4,839 hillslope units and 54,378 

slope segment units (Fig. 7). To improve computational efficiency and ensure timely forecasting, 

spatial units smaller than 0.1 km² (for hillslopes) and 0.03 km² (for slope segments) were excluded. 

This resulted in 1,738 hillslope units, covering 97.0% of the watershed area, and a slope segment 

model retaining 96.9% of the area. Model testing confirmed that excluding the smallest 3% of the 

area had no significant impact on performance metrics (PEPF, RMSE, NSE), while reducing 

simulation time by approximately 15 minutes per cycle. 

 
(a)                                                                                                     (b) 

Fig. 7. Spatial delineation of the Lam Phra Phloeng watershed into hydrological modeling units: 

Hillslope units (a), Slope segment units (b). 

 

3.1.2. Hydrologic Soil Group (HSG) and Land Use (LU) Distribution 

As shown in Table 3, the distribution of HSGs remained relatively stable across the original, 

hillslope, and slope segment models. Group A soils dominated, accounting for over 63% in all cases. 

However, land use distributions varied significantly. For example, in 2011: A_crp (field crops) 

increased from 39.26% in the original data to 51.32% in the hillslope model and 45.65% in the slope 

segment model. For rehab (rehabilitation forest) decreased from 10.23% to 4.55% (hillslope) and 

6.74% (slope segment). Urban areas (Urb) and water bodies (Wat) also showed reduced 

representation in both models. This pattern was consistent across 2015 and 2019, with A_crp 

consistently increasing in both models, especially in the hillslope-based approach. These changes 

reflect how spatial aggregation can influence land use representation; a phenomenon also observed in 

other studies. For instance, in the Makiogawa River Basin (Japan), varying cell sizes led to different 

estimates of dominant land cover (Fong & Kawata, 2019). Similarly, Gebrie and Ludwig found that 

subbasin resolution affected land use proportions in the Blue Nile Basin Gebre & Ludwig, 2014).  
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Table 3.  

Land use (LU) and Hydrologic Soil Group (HSG–LU) distributions calculated by zonal statistics.  

Year Dataset For_evg For_rehab A_crp A_tree Urb Wat Other Sum (%) 

2011 Original 27.02 10.23 39.26 9.61 6.03 2.01 5.84 100 

 Hillslope 29.11 4.55 51.32 4.65 3.86 1.1 5.41 100 

 Slope seg 26.41 6.74 45.65 8.29 5.27 1.79 5.85 100 

2015 Original 26.86 11.3 40.87 7.03 6.14 2.25 5.55 100 

 Hillslope 28.63 5.95 53.18 2.6 3.35 1.19 5.1 100 

 Slope seg 26.24 8.18 47.16 5.76 5.16 1.94 5.56 100 

2019 Original 26.49 11.17 40.01 8.03 6.8 2.33 5.17 100 

 Hillslope 28.45 5.77 52.82 3.04 4.09 1.16 4.67 100 

 Slope seg 25.14 5.85 46.39 6.57 0.51 1.79 13.75 100 

Percentages in each scenario (Original, Hillslope, Slope segment) sum ≈100%. Small differences (<±0.5%) are 

due to dominant-class assignment within units and area thresholds. 

3.1.3. HSG–LU Combinations and Spatial Heterogeneity 

The integration of HSG and LU data revealed further differences between the two models. As 

shown in Table 4 and Fig. 8, the most dominant combination was AA_crp (Group A soil + field 

crops), which increased from 30.94% in the original data to 41.04% in the hillslope model and 36.34% 

in the slope segment model for 2011. Similar trends were observed in 2015 and 2019.  
Table 4.  

Distribution (%) of combined Hydrologic Soil Group and Land Use (HSG–LU) classifications. 

Group 2011 2015 2019 

orig hlslp slpseg orig hlslp slpseg orig hlslp slpseg 

AFor_evg 7.80 7.73 7.71 7.67 7.32 7.58 7.43 7.16 7.37 

AFor_dec 0.00 0.00 0.00 0.02 0.00 0.01 0.02 0.00 0.00 

AFor_plant 3.45 3.54 3.49 3.28 3.24 3.38 3.00 3.01 3.17 

AFor_rehab 8.59 4.34 5.96 9.49 5.37 7.10 9.28 5.04 7.00 

AA_pad 0.27 0.02 0.21 0.20 0.07 0.16 0.20 0.06 0.17 

AA_crp 30.94 41.04 36.34 32.09 43.03 37.39 31.53 42.91 36.77 

AA_tree 7.35 3.80 6.32 5.38 2.11 4.41 6.16 2.36 5.10 

AUrb 4.49 2.88 3.96 4.54 2.30 3.75 5.00 2.77 4.14 

BFor_evg 18.56 20.71 18.06 18.53 20.67 18.04 18.43 20.68 17.86 

BFor_dec 0.05 0.00 0.06 0.05 0.00 0.06 0.05 0.00 0.01 

BFor_plant 1.53 1.36 1.53 1.46 1.24 1.42 1.43 1.22 1.37 

BFor_rehab 1.44 0.17 0.64 1.49 0.25 0.78 1.55 0.35 0.87 

BA_pad 0.22 0.10 0.24 0.22 0.15 0.22 0.19 0.08 0.18 

BA_crp 7.81 9.66 8.83 8.24 9.69 9.28 7.93 9.51 9.12 

BA_tree 2.03 0.83 1.78 1.50 0.50 1.23 1.71 0.68 1.36 

BUrb 1.21 0.60 1.00 1.33 0.83 1.12 1.54 1.11 1.38 

DFor_evg 0.65 0.66 0.64 0.65 0.65 0.63 0.63 0.61 0.60 

DFor_dec 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 

DFor_plant 0.31 0.40 0.33 0.30 0.40 0.31 0.30 0.30 0.30 

DFor_rehab 0.19 0.04 0.15 0.32 0.33 0.30 0.33 0.39 0.34 

DA_pad 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

DA_crp 0.51 0.62 0.48 0.55 0.46 0.49 0.56 0.40 0.51 

DA_tree 0.23 0.01 0.19 0.15 0.00 0.12 0.17 0.00 0.11 

DUrb 0.33 0.39 0.31 0.27 0.21 0.29 0.26 0.21 0.28 
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(a)                                                                                                     (b) 

Fig. 8. Distribution of Hydrologic Soil Groups (HSG) and Land Use (LU) types across different spatial 

discretizationsHillslope units (hlslp) (a); Slope segment units (slpeg) (b). 

 

Other combinations, such as BFor_evg and BA_crp, also showed variation between models. The 

slope segment model generally preserved more heterogeneity due to its finer spatial resolution. For 

example, in a large hillslope unit containing multiple HSGs and LU types, area-weighted averaging 

was used to assign a single representative classification. In contrast, slope segments—being smaller—

often retained distinct classifications, such as BA_crp instead of AA_crp, which can lead to higher 

predicted runoff due to higher CN values. This example illustrates how discretizing hillslopes into 

slope segments enhances spatial heterogeneity, improving the model’s ability to represent variations 

in land use and soil properties, which are critical for accurate runoff prediction. 
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3.2. Comparison of Inflow Prediction Accuracy 

3.2.1. Influence of CN Values on Runoff Prediction 

Across all six years of simulation, both the hillslope and slope segment methods demonstrated 

that increasing the Curve Number (CN) led to higher total runoff volumes. This is expected, as higher 

CN values indicate reduced rainfall retention capacity, resulting in more surface runoff. The optimal 

CNII value for the AA_crp (Group A soil + field crops) combination was determined to be 81.5, 

compared to the USDA (2004) handbook value of 74.9. This 10% increase aligns with findings from 

Wang et al. (2025) and Lian et al. (2020), who also reported that CN values often need to be adjusted 

upward from USDA recommendations to improve model accuracy. Lian et al. found CN values up to 

33% higher than USDA tables. Using slope segments improves land use–HSG homogeneity, which 

reduces CN averaging errors. This leads to more realistic initial abstraction and effective rainfall, and 

better peak timing through routing along locally connected planes. 

3.2.2. Model Accuracy: Calibration and Validation 

To complement the annual hydrograph comparisons, we conducted an event-based evaluation 

across the validation years. Rainfall–runoff events were extracted using a threshold of daily rainfall 

≥10 mm, and corresponding peak inflows were identified. For each event, Percentage Error in Peak 

Flow (PEPF), Root Mean Square Error (RMSE), and Nash–Sutcliffe Efficiency (NSE) were 

computed for both hillslope and slope segment models. Table 5 summarizes the average and 

variability (mean ± SD) of event-based metrics. Across all events, the slope segment model 

consistently achieved lower PEPF, smaller RMSE, and higher NSE than the hillslope model. Model 

performance was evaluated using PEPF, RMSE, and NSE metrics. The slope segment method 

consistently outperformed the hillslope method during both calibration and validation phases (Table 

5, Fig. 9). However, in 2020, both models showed unsatisfactory accuracy. This was attributed to a 

mismatch in rainfall distribution: while 2013 (calibration year) experienced widespread rainfall, 2020 

(validation year) saw heavy rainfall only in the upper and middle watershed. This spatial inconsistency 

led to inaccurate peak flow predictions. As shown in Table 5, heterogeneity preservation was 

enhanced, which links directly to improved performance metrics such as PEPF and NSE. Event-based 

evaluation across all validation years (2012–2015, 2019–2020) is summarized in the table. Slope 

segment units consistently outperform hillslope units, with higher PEPF and NSE and lower RMSE, 

particularly in years with heterogeneous land use–soil distributions. This suggests that finer 

representation of local connectivity and CN assignment improves peak discharge timing and overall 

simulation accuracy (Moriasi et al., 2007; Vannametee et al., 2013). 
Table 5.  

Event-based performance comparison of hillslope and slope segment units across calibration and 

validation years. 

Period Unit type Number of 

events 

PEPF (%) RMSE (m³/s) NSE 

Calibration Hillslope 3 3.93 ± 3.03 2.97 ± 1.06 0.68 ± 0.05 

 Slope segment 3 0.34 ± 1.04 2.71 ± 1.16 0.79 ± 0.03 

Validation Hillslope 3 3.91 ± 3.21 2.21 ± 2.00 0.53 ± 0.31 

 Slope segment 3 0.79 ± 0.99 2.05 ± 1.56 0.59 ± 0.31 

Values are mean ± standard deviation (SD) across multiple rainfall–runoff events. PEPF: peak error in 

peak flow (%), RMSE: root mean square error (m³/s), NSE: Nash–Sutcliffe efficiency. 

3.2.3. Case Study: 2019 Validation Challenges 

In 2019, model accuracy was again unsatisfactory. Although rainfall occurred between 

September 20–25, the observed inflow did not match the expected hydrograph. Two possible causes 

were identified: Rainfall was concentrated in the upper watershed, differing from the 2014 calibration 

year. Inflow data from the Royal Irrigation Department, derived using a water balance method, may 

have contained inaccuracies. The lower model performance during the 2019 and 2020 events can be 

attributed to several factors: spatial mismatch of rainfall, inflow estimation uncertainties, and limits 
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in calibration transfer. While ENSO phases may contribute, the limited number of events precludes 

strong inference. 

 

Fig. 9. Performance comparison of reservoir inflow prediction models using hillslope and  

slope segment methods. 

3.2.4. Impact of Spatial Resolution on Model Performance 

Subdividing the watershed into smaller slope segments increased spatial heterogeneity, allowing 

for more homogeneous units in terms of land use, soil group, and rainfall. This improved the 

representativeness of model parameters and enhanced prediction accuracy. For instance, within the 

same year, the slope segment model consistently produced lower PEPF values, indicating better 

alignment with observed peak inflows. This supports findings from Norris and Haan (1993), Kalin et 

al. (2003), Tripathi et al. (2006), who reported that finer spatial resolution improves peak inflow 

prediction—critical for reservoir management during the rainy season. Our slope segment method, 

relying on DEM-derived connectivity and standard CN values, is expected to transfer well to similar 

data contexts. Testing in contrasting physiography is suggested as future work. 

3.2.5. Comparative Performance Metrics 

RMSE: Lower in the slope segment model, indicating smaller deviations from observed inflows. 

NSE: Higher in the slope segment model, suggesting better overall prediction of total inflow volume. 

These results are consistent with studies by Bingner et al.,1997, Jha et al. (2004), and Rouhani et al. 

(2009), which found that models with larger sub-areas tend to overestimate total runoff volumes. 
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3.2.6. Summary on the comparison 

The SCS CN method proved effective for inflow prediction in the Lam Phra Phloeng Reservoir. 

However, the slope segment-based model demonstrated superior accuracy compared to the hillslope-

based model, particularly in representing spatial variability and predicting peak and total inflows. The 

event-based analysis further supports this conclusion, showing that improvements with slope 

segments were statistically significant across multiple rainfall events, not just isolated years. This 

strengthens confidence that the method enhances inflow prediction under a range of hydrological 

conditions. 

4. CONCLUSIONS  

The results demonstrate that slope segment discretization improved inflow prediction compared 

to hillslope units across all metrics. The main reason lies in the preservation of land use–soil 

heterogeneity at smaller scales. As shown in Table 3, slope segments retained distinct combinations 

(e.g., BA_crp) that were averaged out in hillslopes, leading to more representative CN values. This 

reduced aggregation error in estimating initial abstraction and effective rainfall, directly improving 

peak flow predictions. In addition, slope segments are delineated along local drainage links and 

contours, which enhances flow connectivity and the representation of hillslope hydrological 

processes. This explains why the slope segment model produced more realistic hydrograph shapes, 

with improved peak timing and magnitude. Similar findings have been reported in studies on the 

effect of grid size on runoff predictions (e.g., Hessel, 2005). 

Although slope segments increased the number of modeling units, the computational burden 

remained acceptable within the semi-distributed framework. This suggests that slope segments may 

represent an optimal compromise scale: fine enough to capture local processes, but still efficient 

compared to fully distributed models. Years such as 2019 and 2020 showed weaker performance. 

While spatially uneven rainfall distribution likely played a role, other factors may also have 

contributed, including inflow data uncertainty and the transferability of calibrated CN parameters. We 

therefore refrain from attributing performance differences solely to ENSO phases, and suggest further 

testing with multi-year hydrographs. Overall, slope segments improve model fidelity by reducing 

spatial averaging errors, enhancing connectivity, and better representing heterogeneity in runoff 

generation. This supports our initial hypothesis and indicates strong potential for transferring the 

method to other watersheds with complex terrain and land-use mosaics. 
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