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ABSTRACT 

Coastal eutrophication is an escalating concern in Indonesian estuaries, driven by anthropogenic 

pressures and physical interventions such as sea fencing. This study analyses the spatial and temporal 

changes in Chlorophyll-a (Chl-a) concentrations and Net Primary Productivity (NPP) in the coastal 

waters of Kronjo, Tangerang Regency, before (2020) and after (2024) the installation of illegal sea 

fences. High-resolution (3 m) PlanetScope satellite imagery was processed using the Normalised 

Difference Chlorophyll Index (NDCI) and subsequently modelled into NPP using the Vertically 

Generalised Productivity Model (VGPM), incorporating supporting data such as Photosynthetically 

Active Radiation (PAR), Sea Surface Temperature (SST), and Euphotic Zone Depth (Zeu). Despite an 

increase in localised maximum values, the results revealed a slight decrease in mean Chl-a 

concentrations from 6.12 to 5.89 mg/m³. The spatial distribution of NPP became more homogenised, 

with high-value areas becoming more spatially constrained. A robust Pearson correlation (r = 0.99; p 

< 0.001) between Chl-a and NPP confirms the reliability of NDCI for capturing primary productivity 

dynamics. This study demonstrates the efficacy of high-resolution remote sensing in evaluating the 

ecological impacts of coastal physical structures and informing spatially explicit management 

strategies. This is the first high-resolution remote sensing study assessing Southeast Asia’s pre- and 

post-se fencing impacts, highlighting the critical need for integrated spatial monitoring in tropical 

estuarine ecosystems. 
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1. INTRODUCTION 

Indonesia is an archipelagic country with a maritime area of over 6.4 million km² and a coastline 

of approximately 108,000 km (Yanuar et al., 2023). Its coastal regions are central to a country’s 

development and ecological resilience. Approximately 22% of Indonesia’s population resides in 

coastal regions and relies on fishing, trade, tourism, and maritime transport activities for livelihoods 

(Jamal, 2019). These activities make the coast a national economic hub and increase pressure on the 

coastal environment. 
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One coastal region that reflects the complexity of interactions between oceanographic processes 

and anthropogenic pressures is the Kronjo estuary on the northern coast of Tangerang Regency, 

Banten Province, Indonesia. This area is influenced by the flow of the Cidurian River and its 

tributaries (Kali Malang-Muara Selasih and Cipasilian), as well as by micro-tidal dynamics and land 

runoff (Laksana, 2011; Fadlillah et al., 2018).  

In recent decades, this area has experienced significant water quality degradation due to domestic 

industrial waste, reclamation, and infrastructure development, triggering local eutrophication 

(Wijayanti et al., 2022). The main parameters for evaluating the quality of aquatic ecosystems are 

Chlorophyll-a (Chl-a) concentration and Net Primary Productivity (NPP) (Fan et al., 2023). Chl-a is 

the primary photosynthetic pigment in phytoplankton, which is highly sensitive to light, nutrients, and 

water turbidity variations. In the tropical coastal waters of Indonesia, Chl-a has been shown to have a 

robust correlation with marine primary productivity, with a coefficient of determination R² ≥ 0.9 (Ar-

ridhaty Akita et al., 2023; Nuzapril et al., 2019). Local studies in the Karimun Jawa Islands, Lake 

Lait, and Tangkil Island support these findings, with R² values up to 0.99 (Nuzapril et al., 2017; Fitra 

et al., 2013; Fathia et al., 2021). 

The latest physical stress has emerged on the coast of Tangerang Regency since 2021, namely 

massive unauthorised sea fencing constructed using bamboo. These structures can modify tidal 

currents, trap sediments, and reduce water transparency, suppressing phytoplankton biomass and 

primary productivity. A similar phenomenon has been reported in Jinmeng Bay, China, where a land 

reclamation project involving the creation of artificial islands has led to a 35% increase in water 

residence time, a decrease in nutrient diffusion capacity, and an increased risk of eutrophication and 

algal blooms (Kuang et al., 2024). Studies in the Malacca Strait also showed a decrease in Chl-a 

concentrations from 7-9 mg/L to 5-7 mg/L after reclamation, with a significant correlation to changes 

in Total Suspended Solids (TSS), Sea Surface Temperature (SST), and tidal currents (Abdullah & 

Dusuki, 2018). Additionally, the spatial-temporal distribution of Chl-a in the Pearl River Estuary is 

significantly influenced by anthropogenic activities and changes in water dynamics (Fan et al., 2023).  

Through the Ministry of Marine Affairs and Fisheries or KKP (2025), the Indonesian government 

has also stated that sea fencing can seriously threaten the balance of marine ecosystems. However, 

there are no high-resolution quantitative spatial-temporal studies explicitly comparing ecosystem 

conditions before and after the installation of coastal physical structures such as sea fences in 

Indonesia. Direct monitoring in shallow and muddy waters, such as Kronjo, often faces access and 

cost limitations. Therefore, remote sensing can effectively and efficiently monitor spatial-temporal 

changes (Yulius et al., 2021). Satellite imagery such as the Moderate Resolution Imaging 

Spectroradiometer (MODIS) or Sentinel-2 has been widely used, but its low resolution makes it 

unsuitable for monitoring local changes on a metre scale. PlanetScope, satellite imagery with a spatial 

resolution of 3 metres and daily recording frequency, can detect subtle spatial dynamics in narrow 

areas such as Kronjo. The Normalised Difference Chlorophyll Index (NDCI) algorithm, which utilises 

the red (665 nm) and red-edge (708 nm) bands, has proven accurate for estimating Chl-a in turbid and 

shallow waters (Mishra & Mishra, 2012). In a study by Wasehun et al. (2025), PlanetScope was 

superior in capturing fine spatial dynamics in small water bodies and producing relatively high Chl-a 

estimation accuracy values (R² = 0.71). This supports the use of PlanetScope imagery in studies of 

narrow areas such as Kronjo Sub-district. 

To support a more comprehensive assessment of ecosystem productivity, NDCI can be integrated 

with parameters such as Photosynthetically Active Radiation (PAR) and SST in the Vertically 

Generalised Productivity Model (VGPM) to obtain NPP values (Behrenfeld & Falkowski, 1997). 

Similar studies in tropical regions show that NPP and Chl-a follow the same seasonal patterns and are 

strongly influenced by environmental variability, including The El Niño-Southern Oscillation 

(ENSO) effects, seasonal changes, and human interventions (Dewi et al., 2018; Marpaung et al., 2022; 

Nugraheni et al., 2014). This study aims to analyse the spatial and temporal changes in Chl-a and NPP 

concentrations in Kronjo waters before (2020) and after (2024) the installation of sea fences. In 

addition, this study will evaluate the impact of sea fencing on Chl-a dynamics by combining the NDCI 

algorithm and the VGPM model based on PlanetScope imagery. This study is expected to fill the gap 
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in study on the physical effects of sea fences on tropical waters and offer a spatially detailed approach 

that can be used to support coastal management policies and serve as a reference for similar studies 

in Southeast Asia. 

2. STUDY AREA 

Kronjo Sub-district is one of the coastal regions in Tangerang Regency, Banten Province, 

Indonesia, located on the northern coast of Java Island and directly bordering the Java Sea. 

Geographically, Kronjo Sub-district is located at approximately 6°03′37″ South Latitude and 106°
25′27″ East Longitude and has a relatively long coastline with waters dominated by river estuaries 

and estuary areas. This area is a transitional zone between fluvial and marine systems, influenced by 

micro-tidal fluctuations, dominant west-to-east coastal currents, and nutrient inputs from the 

mainland, particularly from the Cidurian, Cipasilian, and Cimanceuri rivers. Its coastal 

geomorphological characteristics include swampy land, ponds, and secondary mangrove vegetation, 

making the region highly sensitive to natural and anthropogenic environmental changes. Starting in 

2021, physical intervention in sea fence construction using bamboo structures and nets has occurred 

at several coastal locations in Kronjo. These structures were built without hydrodynamic studies or 

official permits and have been reported to harm the coastal ecosystem. A spatial overview of the study 

location is shown in figure 1, which shows the river flow system and the location of the sea fences 

on the coast of Kronjo Kronjo Sub-district. 

 

 

Fig. 1. Map of the study area. 

3. DATA AND METHODS 

This study method began with problem identification, followed by data collection that included 

PlanetScope satellite imagery, PAR, and SST. PlanetScope imagery was processed to calculate the 

Normalised Difference Water Index (NDWI) to separate water areas, which were then used in NDCI  
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calculations and Chl-a estimates. The Chl-a, PAR, and SST parameters are then entered into the 

VGPM to calculate NPP. The estimated NPP and Chl-a results are analysed using Pearson's 

correlation to evaluate the relationship between variables. The final stage of the study is interpreting 

the correlation results and spatial distribution to understand the dynamics of primary productivity 

changes in the study area. The study workflow is shown in figure 2 below. 

 

 

Fig. 2. Flowchart. 

3.1. Data 

This study utilises PlanetScope satellite imagery of the Analytic MS_SR 8-band type, which has 

undergone atmospheric correction (Surface Reflectance). The imagery has a spatial resolution of 3 m, 

with additional information including sun elevation angle, off-nadir angle, and cloud cover 

percentage. The dataset used covers two observation periods June 20, 2020 (pre-fencing) and October 

26, 2024 (post-fencing), with a cloud cover criterion of <10%. Each image covers eight spectral 

channels, with the bands used in the analysis having the following criteria. More details can be seen 

in table 1 below. 
Table 1.  

PlanetScope spectral channels and their use in analysis. 

Band Spectral Name Wavelength (nm) Function 

B4 Green ~550 NDWI, Zeu 

B6 Red ~665 NDCI 

B7 Red edge ~705 NDCI 

B8 Near Infrared (NIR) ~865 NDCI, Shadow 

Source : https://developers.planet.com/docs/apis/data/sensors/ 

https://developers.planet.com/docs/apis/data/sensors/
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The following supporting data was used (in table 2). 

Table 2.  

Supporting data for NPP. 

Parameters Data Source Spatial Resolution Temporal Resolution 

PAR MODIS-Aqua L3 PAR 4 km Daily 

SST MODIS-Aqua L3 SST 4 km Daily 

Precipitation CHIRPS v2.1 0.05° (~5 km) Daily 

3.2. Methods 

This study uses a quantitative approach based on remote sensing to identify and compare spatial 

and temporal changes in water physical-chemical parameters, particularly Chl-a and NPP, before and 

after the installation of marine fencing on the Kronjo coast, Tangerang Regency. The analysis was 

carried out through the following series of processes. 

3.2.1.  Pre-processing and Masking  

The image used is PlanetScope AnalyticMS_SR, which is at the Surface Reflectance (SR) level, 

so no additional atmospheric correction is required. Before calculating the index, cloud, shadow, and 

water masking is performed to ensure that only undisturbed water areas are analysed. 

− Cloud Masking: Clouds generally have very high reflectance in the visible channel, especially in 

the green and red channels. Based on the harmonised PlanetScope SR usage documentation for 

analysis purposes. The 2500 DN threshold corresponds to a reflectance of approximately 0.25 (on 

a scale of 0–10,000), indicating thick clouds with high reflectance. This threshold minimises the 

misclassification of very bright pixels as clouds, the following empirical thresholds are used. 

𝐺𝑟𝑒𝑒𝑛 > 2500 and 𝑅𝑒𝑑 > 2500 

− Shadows (from both clouds and topographic surfaces) exhibit very low reflectance values in the 

visible and NIR channels. The 500 Digital Number (DN) threshold on a 0–10,000 scale 

corresponds to a reflectance value of approximately 0.05, which aligns with the characteristics of 

dark areas. This technique is commonly used in shadow masking algorithms for high-resolution 

imagery such as Landsat/Sentinel (e.g., Fmask) and has been adapted for PlanetScope SR. 

Following the cloud and shadow masking procedures, only water pixels that were completely free 

from contamination were retained. As a result, the final region of interest (ROI) selected for the 

Chl-a and NPP analysis consisted entirely of clear-sky and non-shadowed areas. Therefore, 100% 

of the analysed area was classified as valid, ensuring high spatial integrity and reliability in the 

results. Therefore, pixels are classified as part of a shadow if. 

𝐺𝑟𝑒𝑒𝑛 > 500 and 𝑁𝐼𝑅 > 500 

− Water Masking: The masking of water areas was carried out using the Normalised Difference 

Water Index (NDWI) (McFeeters, 1996), which is a remote sensing technique developed by 

McFeeters (1996) to detect and separate water features from land and terrestrial vegetation. This 

index is handy in identifying water bodies in satellite images because it utilises the difference in 

reflectance characteristics between the green and near-infrared (NIR) channels. Water typically 

has low reflectance to NIR light and high reflectance to green light, while vegetation and dry soil 

show the opposite pattern. NDWI values greater than zero (NDWI > 0) are interpreted as water 

bodies, and these pixels are then used for NDCI-based Chl-a index calculations. The NDWI 

equation used refers to the formula from McFeeters (1996). 
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𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
 

where:  Green = Band 4; and NIR = Band 8. 

3.2.2. Indeks NDCI 

NDCI has been recognised as one of the most efficient and practical methods for estimating Chl-

a concentrations in various water bodies. Numerous studies have documented its practical application 

in Case II waters (An Ru et al., 2013), coastal estuaries (Mishra et al., 2014), and bay areas (Manuel 

& Blanco, 2023). Compared to other methods, NDCI offers ease of application, estimation accuracy, 

and flexibility in cross-platform remote sensing use  (An Ru et al., 2013). Furthermore, several studies 

have shown a strong correlation between NDCI values and in situ measured Chl-a concentrations, 

with reported determination coefficients (R²) ranging from 0.74 to 0.96 (Mishra et al., 2014; Manuel 

& Blanco, 2023). This indicates the consistency of NDCI in describing the spatial and temporal 

variability of primary productivity in water bodies. NDCI is calculated based on the formulation 

introduced by Mishra & Mishra (2012) as follows. 

𝑁𝐷𝐶𝐼 =
𝑅𝑟𝑒𝑑−𝑒𝑑𝑔𝑒 − 𝑅𝑟𝑒𝑑

𝑅𝑟𝑒𝑑−𝑒𝑑𝑔𝑒 + 𝑅𝑟𝑒𝑑

 

where: 𝑅𝑟𝑒𝑑−𝑒𝑑𝑔𝑒  = Band 7; and 𝑅𝑟𝑒𝑑 = Band 6. 

The NDCI values obtained were then converted to Chl-a (mg/m³) using the equation from the 

Mishra & Mishra (2012) study, which is widely applied in tropical regions: 

Chl-a = 𝑎 × 𝑒𝑏.𝑁𝐷𝐶𝐼 

where: NDCI = Calculated from the Red Edge (708 nm) and Red (665 nm) channels; Chl- a = Chl-a 

concentration (mg/m³); 𝑎 = Scale constant (intercept) from regression results; 𝑏 = Slope coefficient 

from regression results; and 𝑒 = Euler’s number, the basis of natural logarithms. 

This model is widely used in tropical regions because it has been tested under high nutrient and 

light fluctuations and turbidity conditions. This algorithm was applied to high-resolution imagery in 

the study by Saulquin et al. (2019). It showed spatial consistency with in situ data, making it ideal for 

monitoring coastal waters in developing regions. The following table 3 shown the classification of 

Chl-a concentrations based on NDCI values for ecological interpretation. 

Table 3.  

Classification of Chl-a values based on the NDCI index. 

NDCI Range Chl-a Range (mg/m³) 

< -0 < 7.5 

-0.1 to 0 7.5 - 16 

0 to 0.1 16 - 25 

0.1 to 0.2 25 - 33 

0.2 to 0.4 33 - 50 

0.4 to 0.5 > 50 

0.5 to 1 Severe bloom 

Source: Mishra & Mishra (2012). 

The application of NDCI in this study enabled the identification of productive and eutrophic 

zones and the detection of possible ecological disturbances caused by human interventions such as 

marine fencing. The strong correlation between NDCI and Chl-a, which has been proven in various 

studies, makes this method valid for assessing changes in water quality spatially and temporally. 
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3.2.3. NPP 

NPP can be estimated using the VGPM global scale model with remote sensing satellite image 

data inputs (Behrenfeld & Falkowski, 1997; Marpaung et al., 2022). This model calculates NPP (in 

units of mg C/m²/day) based on Chl-a concentration, PAR, Zeu, and maximum daily phytoplankton 

productivity 𝑃𝑏
𝑜𝑝𝑡

, which is controlled by SST, using the following equation. 

𝑁𝑃𝑃 = 0.66125 ×  𝑃𝑏
𝑜𝑝𝑡

× (
𝐸𝑃𝐴𝑅

𝐸𝑃𝐴𝑅 + 4.1
 ) × 𝐶𝑠𝑎𝑡 × 𝑍𝑒𝑢 

where:  𝑃𝑏
𝑜𝑝𝑡

 = Optimal productivity parameters, depending on temperature; 𝐶𝑠𝑎𝑡 = Chl-a 

concentration (mg/m³); 𝐸𝑃𝐴𝑅 = Photosynthetic active radiation intensity (Einstein/m²/day); 𝑍𝑒𝑢 = 

Depth of the Euphotic zone (m). 

3.2.4. Pearson Correlation 

To assess the relationship between Chl-a concentration and NPP, Pearson’s correlation analysis 

(r) was performed, assuming a normal distribution and a linear relationship between variables. The 

analysis was conducted on paired samples for 2020 and 2024, using data from raster to sampling 

points obtained from the NDWI masking process. The correlation was considered strong if r > 0.8, 

and statistical significance was determined with p < 0.05. This analysis refers to the classical statistical 

method by Pearson (1896), which has been revisited and widely used in modern oceanography and 

ecology study (Marpaung et al., 2022). Pearson’s correlation (r) was calculated using the formula. 

𝑟 =
𝑟 ∑ 𝑥𝑦 − ∑ 𝑥 ∑ 𝑦

√[𝑛 ∑ 𝑥2 − (∑ 𝑥)2][𝑛 ∑ 𝑦2 − (∑ 𝑦)
2

]
 

where:  x = Chl-a (mg/m³); y = NPP mg C/m²/day; and n = Sample size. 

Pearson’s correlation is used to evaluate the extent to which two variables are related. A 

Pearson correlation value (r) close to +1 or -1 indicates a robust linear relationship with a positive or 

negative direction. If the r value is positive (r > 0), then the relationship between the variables is 

unidirectional, and the higher the value, the stronger the relationship. Conversely, r < 0 indicates an 

inverse relationship but is still strong. If the r value approaches zero, the relationship between the 

variables is considered weak or statistically insignificant (Walpole, 2012; Sambah et al., 2020). 

Generally, an r value > 0.8 is categorised as a strong correlation, with a significance level accepted if 

p < 0.05. This approach follows Pearson (1896), which is still widely applied in spatial relationship 

analysis in modern oceanography and ecology. 

4. RESULTS  

4.1. Spatial changes in NDCI 

The spatial distribution of NDCI values as a bio-optical indicator of Chl-a shows striking spatial-

temporal variations between the two observation periods. In 2020 (pre-fencing), the maximum NDCI 

value was 0.245, with a fairly widespread distribution of positive values in the eastern and central 

coastal regions. This indicates a high abundance of phytoplankton, particularly in the nutrient-rich 

estuary of the Cidurian River, which receives significant terrestrial runoff. Conversely, in 2024 (post-

fencing), the maximum NDCI value was 0.428, but areas with negative NDCI values (< 0) expanded 

significantly, particularly in regions bounded by the sea fence. The distribution map of NDCI values 

can be seen in figure 3 below. These findings indicate decreased primary productivity homogeneity 

and local accumulation of Chl-a in enclosed areas due to nutrient circulation and distribution 

disruption. Activities around the coast, such as reclamation and especially the construction of sea 

fences, contribute to changes in the distribution and concentration of Chl-a in the water. The 

interpretation of the values occurring before and after the construction of the sea wall can be seen in 

table 4 below and in table 5, the comparison of Chl-a before and after sea walling. 
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Fig. 3. Spatial distribution map of NDCI values in June 2020 (pre-fencing) and October 2024 (post-fencing). 

Table 4.  

Comparison of NDCI values before and after sea fencing. 

Year Min Max Mean STD 

2020 -0.988 0.245 -0.169 0.140 

2024 -0.994 0.428 -0.155 0.086 

Source: Data analysis, 2025. 

4.2. Spatial changes in Chl-a 

As the primary pigment for photosynthesis in phytoplankton, Chl-a reflects the dynamics of 

water fertility. In 2020, the maximum value was 30.16 mg/m³ with an average of 6.12 mg/m³. By 

2024, the maximum value increased to 65.47 mg/m³, but the average decreased to 5.89 mg/m³. The 

distribution map of Chl-a can be seen in figure 4 below. 

Similar to what happened with NDCI values, the increase in maximum Chl-a values was not 

accompanied by an increase in the average area of this area, reflecting the presence of local 

eutrophication due to water stagnation. The area enclosed by the sea fence became a place 

accumulating nutrients and Chl-a, but overall productivity actually decreased. These findings support 

studies by Mishra & Mishra (2012); Manuel & Blanco (2023), which state that Chl-a is a sensitive 

indicator of physical disturbances and water dynamics.  
 

Table 5.  

Comparison of Chl-a before and after sea walling. 

Year Min Max Mean STD 

2020 0.16 30.16 6.12 3.40 

2024 0.15 65.47 5.89 2.29 

Source: Data analysis, 2025. 
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Fig. 4. Spatial distribution map of Chl-a in June 2020 (pre-fencing) and October 2024 (post-fencing). 

4.3.  Estimation and Distribution of NPP 

NPP, estimated using the VGPM, which integrates Chl-a concentration, Euphotic Zeu, PAR, 

and SST, shows a spatial pattern consistent with the distribution of Chl-a. In 2020 (before the 

installation of the sea fence), NPP ranged from 3.23 to 64.82 mg C/m²/day, with an average of 26.91 

mg C/m²/day. In 2024 (after the installation of the sea fence), the range increased to 3.17 to 96.63 mg 

C/m²/day, although the average decreased slightly to 26.80 mg C/m²/day. Maps of the spatial 

distribution of these values are shown in figure 5 below. 

As shown in table 6, although the average values appear relatively stable in both periods, the 

spatial distribution of NPP shows clear homogenisation. High-productivity zones have become 

increasingly fragmented and localised, reflecting the spatial patterns observed in the NDCI and Chl-

a maps. This indicates that the presence of the sea fence has disrupted nutrient circulation and vertical 

mixing, causing primary productivity to concentrate in limited and stagnant zones. These findings 

align with previous studies highlighting the sensitivity of NPP to bio-optical and physical parameters 

of the water column. 
Table 6.  

Comparison of NPP before and after sea walling. 

Year Min Max Mean STD 

2020 3,23 64,82 26,91 5,31 

2024 3,17 96,63 26,80 5,32 

Source: Data analysis, 2025. 

According to the trophic classifications proposed by Vollenweider (1968) and Rodhe (1969), as 

cited in Kumar et al. (2023), oligotrophic waters are defined as having daily NPP values of 65-300 

mg C/m² and 30-100 mg C/m², respectively. With average values of less than 27 mg C/m²/day 

recorded in 2020 and 2024, the waters of Kronjo fall well below both thresholds, particularly even 

below Rodhe’s lower limit.  
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Fig. 5. Spatial distribution map of NPP in June 2020 (pre-fencing) and October 2024 (post-fencing). 

This places the study area in a severely nutrient-deficient state, indicating a very low level of 

primary productivity. These results confirm that the Kronjo coastal waters are not only outside the 

productive range of typical oligotrophic systems but may represent an ultra-oligotrophic condition, 

which is ecologically concerning for a tropical coastal zone. The disruption in hydrodynamics caused 

by the sea fence, combined with limited land-based nutrient inputs, has likely constrained 

phytoplankton growth and reduced overall ecosystem function in the area. 

 

4.4.  The effect of rainfall on water dynamics 

 

Precipitation is one of the main climatological factors affecting primary productivity in coastal 

regions, particularly through runoff mechanisms that carry nutrients from land to water. Based on 

CHIRPS (Climate Hazards Group InfraRed Precipitation with Station) data, monthly rainfall in the 

study area was recorded at 84.17 mm in June 2020 and 46.67 mm in October 2024 (figure 6). 

Although there was no rainfall on the main observation dates (20 June 2020 and 26 October 2024), 

the high monthly precipitation accumulation still significantly impacted water fertility dynamics. 

During June 2020, relatively high rainfall likely contributed to increased runoff from the 

Cidurian River, its tributaries, and adjacent irrigation networks along the Kronjo coastline. This runoff 

may have introduced dissolved nutrients such as nitrogen and phosphate into the coastal waters, 

potentially supporting phytoplankton growth. According to Suardiani et al. (2018), rainfall in tropical 

coastal regions can increase phytoplankton biomass by supplying land-derived nutrients. In this 

period, the average Chl-a concentration reached 6.12 mg/m³, accompanied by a uniform spatial 

distribution of NPP across the estuarine zone. Comparable responses to precipitation have been 

documented elsewhere. Prabuwono et al. (2023) observed that heightened runoff in the southern Red 

Sea was associated with increased Chl-a concentrations exceeding 1.3 mg/m³, while Herdianti et al. 

(2023) emphasised the role of seasonal precipitation variability in modulating Chl-a and NPP in 

tropical shallow coastal systems. 
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Fig. 6. Monthly rainfall graph in June 2020 and October 2024. 

In contrast, October 2024 was characterised by a significant decline in monthly rainfall-nearly 

50% lower than in June 2020, coinciding with a sea fence structure that physically restricted water 

circulation and vertical mixing. Although localised Chl-a maxima reached 65.47 mg/m³, the overall 

average concentration declined to 5.89 mg/m³, and NPP distribution became more spatially confined. 

These observations indicate the emergence of localised eutrophication, likely driven by the reduced 

exchange of nutrients in semi-enclosed areas.  

Overall, the results suggest that the productive conditions observed in 2020 were shaped by a 

combination of hydrological and physical factors, including nutrient delivery and water circulation. 

In the case of Kronjo’s coastal waters, monthly rainfall should be considered a contributing driver 

of nutrient dynamics, particularly when interpreted alongside anthropogenic modifications and 

hydrodynamic constraints. 

4.5. Relationship between Chl-a concentration and NPP 

Pearson’s correlation analysis between Chl-a concentration and NPP values showed a robust and 

statistically significant relationship in both years of observation. The correlation test results are shown 

in figure 7 below. 

 

 

Fig. 7. The linear relationship between Chl-a and NPP in 2020 and 2024. 
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In 2020, the Pearson correlation between Chl-a and NPP reached r = 0.99 with a significance 

value of p = 0.000, indicating an almost perfect linear relationship. This reflects that variations in Chl-

a concentration explain almost all variations in NPP values in conditions before marine fencing. Most 

data points show a consistent positive trend, indicating that increases in phytoplankton biomass 

directly enhance primary productivity in the water. In 2024, a similar relationship remained strong, 

with a value of r = 0.99 and p = 0.000. Although the correlation remained high, the distribution of 

points tended to be more concentrated in the Chl-a range of 5-10 mg/m³, with a few outliers at high 

values. This indicates that despite the implementation of marine fencing and changes in the spatial 

pattern of Chl-a, the functional relationship between phytoplankton biomass and productivity remains 

intact. However, the spatial homogenisation of NPP (discussed in Section 3.3) suggests that 

productivity contributions tend to be more locally concentrated post-fencing (not spatially extensive). 

These findings reinforce previous study results that Chl-a is a strong indicator for estimating 

primary productivity in tropical coastal waters (Behrenfeld & Falkowski, 1997; Werdell et al., 2013). 

The strong correlation likewise reflects the reliability of the NDCI algorithm in conjunction with the 

VGPM method in consistently capturing ecosystem responses to physical alterations resulting from 

human activities. Ecologically, this strong correlation underscores the central role of phytoplankton 

as primary producers in the marine food chain and as early indicators of changes in water health 

(Bedford et al., 2018). Therefore, fluctuations in Chl-a, as observed before and after the installation 

of the sea fence, can serve as a key parameter for monitoring anthropogenic impacts on tropical coastal 

ecosystems.  

While the strong correlation between Chl-a and NPP reinforces the reliability of the remote 

sensing approach, it is important to acknowledge the limitations associated with the absence of in-

situ validation. The estimation of Chl-a using the NDCI may be subject to uncertainties caused by 

several factors, including high turbidity, suspended sediments, atmospheric correction residuals, and 

shallow water effects common in estuarine environments. These uncertainties can lead to under- or 

overestimation of Chl-a concentrations, which, when used as input in the VGPM model, may 

propagate and influence the derived NPP values. Therefore, although the spatial trends and 

correlations remain consistent, the absolute accuracy of productivity estimates should be interpreted 

with caution. Incorporating ground-truth data in future studies would enhance model robustness and 

strengthen the interpretation of remote sensing-derived productivity assessments. 

5.  CONCLUSION 

The findings of this study indicate that the level of primary productivity in the coastal waters of 

the Kronjo Sub-district is extremely low, falling below the oligotrophic threshold. This reflects 

limited water fertility and an imbalance within the local ecosystem. The low average values of NPP, 

along with the narrowing spatial distribution of chl-a, suggest restricted nutrient supply and disrupted 

phytoplankton dynamics, which play a key role as primary producers in the marine food web. The 

installation of these fences appears to impede the natural mixing of water masses, thereby intensifying 

stagnation and promoting the build-up of nutrients in confined zones-conditions which may give rise 

to localised eutrophication. This situation is further aggravated by a decline in rainfall, resulting in 

diminished terrestrial runoff that would otherwise serve as a key source of nutrients.  

In light of these findings, it is strongly recommended that all sea fence structures, particularly 

those located in estuarine areas critical for nutrient exchange, be urgently reviewed and dismantled to 

restore ecological connectivity and natural hydrodynamic flow. Such interventions are essential for 

supporting primary productivity and preventing further degradation of estuarine ecosystems. Beyond 

these site-specific recommendations, this study highlights broader implications for coastal spatial 

governance in Indonesia.  

The results underscore the importance of integrating high-resolution ecological monitoring into 

the enforcement of spatial regulations, such as the Regional Spatial Plan or RTRW and Coastal and 

Small Islands Zoning Plan or RZWP3K. Although these planning instruments are formally 

established, they often lack effective enforcement, allowing unregulated physical structures to persist 
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in ecologically sensitive zones. Strengthening monitoring systems and enforcement mechanisms is 

therefore critical to ensuring that future coastal development aligns with ecosystem resilience and 

long-term sustainability goals.  

This study successfully achieved its objective of identifying changes in Chl-a concentrations and 

primary productivity before and after the construction of sea fences and assessing the impact on 

ecosystem balance. The integration of high-resolution satellite imagery, the NDCI, and the VGPM 

has proven to effectively detect ecological changes spatially and temporally. It holds potential as a 

long-term monitoring tool for other tropical coastal regions. Nonetheless, the study was constrained 

by the absence of in-situ validation data. Future study should incorporate synchronous field-based 

measurements to enhance the accuracy and robustness of remote sensing-based primary productivity 

assessments in coastal environments. 
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